Serverlessconf 2016 – New York City: a personal report

Serverlessconf 2016 – New York City: a personal report – is a fascinating read.  Let me get you hooked:

This event left me with the impression (or the confirmation) that there are two paces and speeds at which people are moving.

There is the so called “legacy” pace. This is often characterized by the notion of VMs and virtualization. This market is typically on-prem, owned by VMware and where the majority of workloads (as of today) are running. Very steady.

The second “industry block” is the “new stuff” and this is a truly moving target. #Serverless is yet another model that we are seeing emerging in the last few years. We have moved from Cloud (i.e. IaaS) to opinionated PaaS, to un-opinionated PaaS, to DIY Containers, to CaaS (Containers as a Service) to now #Serverless. There is no way this is going to be the end of it as it’s a frenetic moving target and in every iteration more and more people will be left behind.

This time around was all about the DevOps people being “industry dinosaurs”. So if you are a DevOps persona, know you are legacy already.

Sometimes I feel like I am leaving on a different planet.  All these people are so close, yet so far away …

How to Recover an Unreachable EC2 Linux Instance

volume

Here is a tutorial that will come handy one day, in the moment of panic – How to Recover an Unreachable Linux Instance. It has plenty of screenshots and shows each step in detail.

TL;DR version:

  1. Start a new instance (or pick one from the existing ones).
  2. Stop the broken instance.
  3. Detach the volume from the broken instance.
  4. Attach the volume to the new/existing instance as additional disk.
  5. Troubleshoot and fix the problem.
  6. Detach the volume from the new/existing instance.
  7. Attach the volume to the broken instance.
  8. Start the new instance.
  9. Get rid of the useless new instance, if you didn’t reuse the existing one for the troubleshooting and fixing process.
  10. ???
  11. PROFIT!

SSH multiplexing and Ansible via bastion host

It never ceases to amaze me how even after years and years of working with some technologies I keep finding out about super useful features in those technologies, that could have saved me lots of time if I knew about them earlier.  Today was a day just like that.

I was working on the Ansible setup for a new hosting environment.  One particular thing I wanted to utilize more was a bastion host – a single Linux machine with exposed secure shell (SSH) port, which will be used for managing the configurations of all the servers within the environment.  I sort of done that before, but the solution wasn’t as elegant as I wanted it to be.

So, I came across this article – Running Ansible Through an SSH Bastion Host.  Which, among other things taught me about a feature that I didn’t know nothing about.  Literally.  Haven’t even heard about it.  Multiplexing in OpenSSH:

Multiplexing is the ability to send more than one signal over a single line or connection. With multiplexing, OpenSSH can re-use an existing TCP connection for multiple concurrent SSH sessions rather than creating a new one each time.

This doesn’t sound too useful for when you are working in command line, one server at a time.  Who cares how many TCP connections do you need? It’ll be one, or two, or five.  Ten, if you are really involved.  But by that time you’ll probably be running background processes, and screen or tmux (which are apparently called “terminal multiplexers“).

It’s when you are going deeper into automation, such as in my case with Ansible, when you’ll need OpenSSH multiplexing.  Ansible, being a configuration manager, can run a whole lot of commands one after another.  It can run them on multiple servers in parallel as well.  That’s where reusing the connections can make quite a bit of a difference.  If every command you run connects to the remote server, executes, and then disconnects, you can benefit from not needing to connect and disconnect multiple times (tens or hundreds of times, every playbook run).   Reusing connection for parallel jobs is even better – and that’s a case with bastion host, for example.

Here are a few useful links from that article, just in case the ether eats it one day:

Armed with those, I had my setup running in no time.  The only minor correction I had to do for my case was the SSH configuration for the bastion host.  The example in the article is NOT wrong:

Host 10.10.10.*
  ProxyCommand ssh -W %h:%p bastion.example.com
  IdentityFile ~/.ssh/private_key.pem

Host bastion.example.com
  Hostname bastion.example.com
  User ubuntu
  IdentityFile ~/.ssh/private_key.pem
  ForwardAgent yes
  ControlMaster auto
  ControlPath ~/.ssh/ansible-%r@%h:%p
  ControlPersist 5m

It’s just that in my case, I use hostnames both for the bastion host and the hosts which are managed through it.  So I had to adjust it as so:

Host *.example.com !bastion.example.com
  ProxyCommand ssh -W %h:%p bastion.example.com
  IdentityFile ~/.ssh/private_key.pem

Host bastion.example.com
  Hostname bastion.example.com
  User ubuntu
  IdentityFile ~/.ssh/private_key.pem
  ForwardAgent yes
  ControlMaster auto
  ControlPath ~/.ssh/ansible-%r@%h:%p
  ControlPersist 5m

Notice the two changes:

  1. Switch of the first block from IP addresses to host names, with a mask.
  2. Negation of the bastion host configuration.

The reason for the second change is that if there are multiple Host matches in the configuration file, OpenSSH will combine all options from the matched configurations (something I didn’t find in the ssh_config manual).  Try this example ssh.conf with some real hosts of yours:

Host bastion.example.com
	User someuser

Host *.example.com
	Port 2222

You’ll see the output similar to this:

$ ssh -F ssh.conf bastion.example.com -v
OpenSSH_7.2p2, OpenSSL 1.0.2h-fips  3 May 2016
debug1: Reading configuration data ssh.conf
debug1: ssh.conf line 1: Applying options for bastion.example.com
debug1: ssh.conf line 4: Applying options for *.example.com
debug1: Connecting to bastion.example.com [1.2.3.4] port 2222.
^C

Once you negate the bastion host from the wildcard configuration, everything works as expected.

You might also try using “%r@%h:%p” for the socket to be different for each remote username that you will concurrently connect with, but that’s just nit-picking.

Packer – a tool for creating VM and container images

With the recent explosion in the virtualization and container technologies, one is often left disoriented.  Questions like “should I use virtual machines or containers?”, “which technology should I use”, and “can I migrate from one to another later?” are just some of those that will need answering.

Here is an open source tool that helps to avoid a few of those questions – Packer (by HashiCorp):

Packer is a tool for creating machine and container images for multiple platforms from a single source configuration.

Have a look at the supported platforms:

  • Amazon EC2 (AMI). Both EBS-backed and instance-store AMIs within EC2, optionally distributed to multiple regions.
  • DigitalOcean. Snapshots for DigitalOcean that can be used to start a pre-configured DigitalOcean instance of any size.
  • Docker. Snapshots for Docker that can be used to start a pre-configured Docker instance.
  • Google Compute Engine. Snapshots for Google Compute Engine that can be used to start a pre-configured Google Compute Engine instance.
  • OpenStack. Images for OpenStack that can be used to start pre-configured OpenStack servers.
  • Parallels (PVM). Exported virtual machines for Parallels, including virtual machine metadata such as RAM, CPUs, etc. These virtual machines are portable and can be started on any platform Parallels runs on.
  • QEMU. Images for KVM or Xen that can be used to start pre-configured KVM or Xen instances.
  • VirtualBox (OVF). Exported virtual machines for VirtualBox, including virtual machine metadata such as RAM, CPUs, etc. These virtual machines are portable and can be started on any platform VirtualBox runs on.
  • VMware (VMX). Exported virtual machines for VMware that can be run within any desktop products such as Fusion, Player, or Workstation, as well as server products such as vSphere.

The only question remaining now, it seems, is “why wouldn’t you use it?”. :)

httpoxy – a CGI application vulnerability for PHP, Go, Python and others

httpoxy

httpoxy is a set of vulnerabilities that affect application code running in CGI, or CGI-like environments.

It comes down to a simple namespace conflict:

  • RFC 3875 (CGI) puts the HTTP Proxy header from a request into the environment variables as HTTP_PROXY
  • HTTP_PROXY is a popular environment variable used to configure an outgoing proxy

This leads to a remotely exploitable vulnerability. If you’re running PHP or CGI, you should block the Proxy header now.