Largest digital survey of the sky mapped billions of stars

Engadget reports:

An international team of astronomers have released two petabytes of data from the Pan-STARRS project that’s also known as the “world’s largest digital sky survey.” Two petabytes of data, according to the team, is equivalent to any of the following: a billion selfies, one hundred Wikipedias or 40 million four-drawer filing cabinets filled with single-spaced text. The scientists spent four years observing three-fourths of the night sky through their 1.8 meter telescope at Haleakala Observatories on Maui, Hawaii, scanning three billion objects in the Milky Way 12 times in five different filters. Those objects included stars, galaxies, asteroids and other celestial bodies.

Wow … this is mind blowing at the very least …

See the image above? That’s the result of half a million 45-second exposures taken over four years. They’re releasing even more detailed images and data in 2017 — for now, you can check out what the team released to the public on the official Pan-STARRS website.


How cancer was created by the evolution

BBC has a rather lengthy article on how cancer was created by the evolution.  The gist of it is not very cheerful:

But a more telling reason for the rise is that humans, on average, live a lot longer than they used to. “If you live long enough you will get cancer,” says Biankin.

“If we decide that we all want to live to more than 70, then we have to accept that sooner or later we will get some sort of cancer,” says Bardelli. It is inevitable because our cells have not evolved to maintain their DNA for as long as we now live, he says.

However, there is some really amazing photography of cancer cells and the like.

CP695J Cancer cell scientific 3d illustration
CP695J Cancer cell scientific 3d illustration

Self-driving cars’ unexpected side effect …

Slashdot links to a rather unexpected prediction for the time when we are all driven by the robot cars:

“At least one expert is anticipating that, as the so-called ‘smart’ cars get smarter, there will eventually be an increase in an unusual form of distracted driving: hanky-panky behind the wheel.”

Coldest, oldest, fastest : 10 extreme sea creatures

Coldest, oldest, fastest : 10 extreme sea creatures – these are amazing, both in looks and facts.  Here are my favorite two.

Angler Fish Photo: Edith Widder
Angler Fish
Photo: Edith Widder

Anglerfish inhabit the deep sea, and for a century they baffled marine biologists. At first only female anglerfish were known; where the males were and what they looked like was a complete mystery. Then a parasitologist began studying the worm-like parasites generally attached to anglerfish females. What he found, instead of parasites, were anglerfish males — each undergoing a radical transformation. When a male anglerfish is tiny, he finds and attaches to a female. First his jaws dissolve and his bloodstream fuses with the female’s. Then his brain disappears and his guts shrink. Eventually he is little more than a testis, fertilizing the eggs of one female, for the rest of his life.

Anemone purple anemonefish CC BY-SA 3.0 Photo: Nick Hobgood Purple anemone (Heteractis magnifica) and resident anemonefish (Amphiprion ocellaris) (clownfish) in East Timor.
Anemone purple anemonefish
CC BY-SA 3.0
Photo: Nick Hobgood
Purple anemone (Heteractis magnifica) and resident anemonefish (Amphiprion ocellaris) (clownfish) in East Timor.

Clownfish families were made famous in ‘Finding Nemo,’ but real ones have more peculiar lives than the movie lets on. In a sea anemone where the clownfish live, the biggest fish is always a female, laying all the eggs. The next biggest fish is a functional male, fertilizing them. And lots of smaller clownfish are immature males. When the female dies or is eaten by a predator, the biggest male switches sex to become female. At the same time the biggest immature male grows into a functional male that can fertilize the eggs. This conveyor belt system of parenting assures a constant supply of baby Nemos.

Fruit Flies, Fighter Jets Use Similar Evasive Tactics When Attacked

Fruit Flies, Fighter Jets Use Similar Evasive Tactics When Attacked

When startled by predators, tiny fruit flies respond like fighter jets – employing screaming-fast banked turns to evade attacks. Researchers at the University of Washington used an array of high-speed video cameras operating at 7,500 frames a second to capture the wing and body motion of flies after they encountered a looming image of an approaching predator (abstract). ‘We discovered that fruit flies alter course in less than one one-hundredth of a second, 50 times faster than we blink our eyes, and which is faster than we ever imagined.’ In the midst of a banked turn, the flies can roll on their sides 90 degrees or more, almost flying upside down at times, said Florian Muijres, a UW postdoctoral researcher and lead author of the paper. ‘These flies normally flap their wings 200 times a second and, in almost a single wing beat, the animal can reorient its body to generate a force away from the threatening stimulus and then continues to accelerate,’ he said.

First there was the anternet, and now this?  It almost sounds like humans a giant insects…

The anternet

Stanford researchers discover the ‘anternet’

Transmission Control Protocol, or TCP, is an algorithm that manages data congestion on the Internet, and as such was integral in allowing the early web to scale up from a few dozen nodes to the billions in use today. Here’s how it works: As a source, A, transfers a file to a destination, B, the file is broken into numbered packets. When B receives each packet, it sends an acknowledgment, or an ack, to A, that the packet arrived.

This feedback loop allows TCP to run congestion avoidance: If acks return at a slower rate than the data was sent out, that indicates that there is little bandwidth available, and the source throttles data transmission down accordingly. If acks return quickly, the source boosts its transmission speed. The process determines how much bandwidth is available and throttles data transmission accordingly.

It turns out that harvester ants (Pogonomyrmex barbatus) behave nearly the same way when searching for food. Gordon has found that the rate at which harvester ants – which forage for seeds as individuals – leave the nest to search for food corresponds to food availability.

A forager won’t return to the nest until it finds food. If seeds are plentiful, foragers return faster, and more ants leave the nest to forage. If, however, ants begin returning empty handed, the search is slowed, and perhaps called off.

Prabhakar wrote an ant algorithm to predict foraging behavior depending on the amount of food – i.e., bandwidth – available. Gordon’s experiments manipulate the rate of forager return. Working with Stanford student Katie Dektar, they found that the TCP-influenced algorithm almost exactly matched the ant behavior found in Gordon’s experiments.