
The

Programming ~" ·.
Language
PolyAWK-
The Toolbox Language·

Auru:o V. AHo
BRIAN W.I<ERNIGHAN

PETER J. WEINBERGER

TheAWK4
Programming~

Language

TheA WI(.
Programming~

Language

ALFRED V. AHo
BRIAN w. KERNIGHAN

PETER J. WEINBERGER
AT & T Bell Laboratories
Murray Hill, New Jersey

A •• ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn
Sydney • Singapore • Tokyo • Madrid • Bogota

Santiago • San Juan

This book is in the Addison-Wesley Series in Computer Science

Michael A. Harrison
Consulting Editor

Library of Congress Cataloging-in-Publication Data
Aho, Alfred V.

The AWK programming language.
Includes index.
I. AWK (Computer program language) I. Kernighan,

Brian W. II. Weinberger, Peter J. III. Title.
QA76.73.A95A35 1988 005.13'3 87-17566
ISBN 0-201-07981-X

This book was typeset in Times Roman and Courier by the authors, using an Autologic
APS-5 phototypesetter and a DEC VAX 8550 running the 9th Edition of the UNIX~
operating system.

-~ -
ATs.T
Copyright c 1988 by Bell Telephone Laboratories, Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy
ing, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

UNIX is a registered trademark of AT&T.

DEFGHIJ-AL-898

PREFACE

Computer users spend a lot of time doing simple, mechanical data manipula
tion - changing the format of data, checking its validity, finding items with
some property, adding up numbers, printing reports, and the like. All of these
jobs ought to be mechanized, but it's a real nuisance to have to write a special
purpose program in a standard language like C or Pascal each time such a task
comes up.

Awk is a programming language that makes it possible to handle such tasks
with very short programs, often only one or two lines long. An awk program is
a sequence of patterns and actions that tell what to look for in the input data
and what to do when it's found. Awk searches a set of files for lines matched
by any of the patterns; when a matching line is found, the corresponding action
is performed. A pattern can select lines by combinations of regular expressions
and comparison operations on strings, numbers, fields, variables, and array ele
ments. Actions may perform arbitrary processing on selected lines; the action
language looks like C but there are no declarations, and strings and numbers
are built-in data types.

Awk scans the input files and splits each input line into fields automatically.
Because so many things are automatic - input, field splitting, storage manage
ment, initialization - awk programs are usually much smaller than they would
be in a more conventional language. Thus one common use of awk is for the
kind of data manipulation suggested above. Programs, a line or two long, are
composed at the keyboard, run once, then discarded. In effect, awk is a
general-purpose programmable tool that can reprace a host of specialized tools
or programs.

The same brevity of expression and convenience of operations make awk
valuable for prototyping larger programs. One starts with a few lines, then
refines the program until it does the desired job, experimenting with designs by
trying alternatives quickly. Since programs are short, it's easy to get started,
and easy to start over when experience suggests a different direction. And it's
straightforward to translate an awk program into another language once the
design is right.

iii

iv THE A WK PROGRAMMING LANGUAGE PREFACE

Organization of the Book

The first goal of this book is to teach you what awk is and how to use it
effectively. Chapter 1 is a tutorial on the bare minimum necessary to get
started; after reading even a few pages, you should have enough information to
begin writing useful programs. The examples in this chapter are very short and
simple, typical of the interactive use of awk.

Chapter 2 covers the entire language in a systematic order. Although there
are plenty of examples in this chapter, like most manuals it's long and a bit dry,
so you will probably want to skim it on a first reading.

The rest of the book contains a wide variety of examples, chosen to show the
breadth of applicability of awk and how to make good use of its facilities. Some
of the programs are in regular use in our environment; others show ideas but are
not intended for production use; a few are included just because they are fun.

The emphasis in Chapter 3 is on retrieval, transformation, reduction and
validation of data - the tasks that awk was originally designed for. There is
also a discussion of how to handle data like address lists that naturally comes in
multiline chunks.

Awk is a good language for managing small, personal databases. Chapter 4
discusses the generation of reports from databases, and builds a simple rela
tional database system and query language for data stored in multiple files.

Awk handles text with much the same convenience that most languages han
dle numbers, so it often finds application in text processing. Chapter 5
describes programs for generating text, and some that help with document
preparation. One of the examples is an indexing program based on the one we
used for this book.

Chapter 6 is about "little languages," that is, specialized languages that
focus on a narrow domain. Awk is convenient for writing small translators
because its basic operations support many of the lexical and table-management
tasks encountered in translation. The chapter includes an assembler, a graphics
language, and several calculators.

Awk is a good language for expressing certain kinds of algorithms. Because
there are no declarations and because storage management is easy, an awk pro
gram has many of the advantages of pseudo-code but awk programs can be run,
which is not true of pseudo-code. The focus in Chapter 7 is on experimentation
with algorithms, including testing and performance evaluation. It shows several
sorting algorithms, and culminates in a version of the Unix make program.

Chapter 8 describes some of the historical reasons why awk is as it is, and
offers some suggestions on what to do when it is too slow or too confining.

Appendix A is a summary of the language; Appendix B contains answers to
selected exercises.

You should begin by reading Chapter 1, and trying some small examples of
your own. Go through Chapter 2 quickly, concentrating on the summaries and
tables; don't get bogged down in the details. Then read as far into each of the

THE A WK PROGRAMMING LANGUAGE PREFACE v

subsequent chapters as your interest takes you. The chapters are nearly
independent of each other, so the order doesn't matter much.

The Examples

There are several themes in the examples. The primary one, of course, is to
show how to use awk well. We have tried to include a wide variety of useful
constructions, and we have stressed particular aspects like associative arrays and
regular expressions that typify awk programming.

A second theme is to show awk's versatility. Awk programs have been used
from databases to circuit design, from numerical analysis to graphics, from com
pilers to system administration, from a first language for nonprogrammers to
the implementation language for software engineering courses. We hope that
the diversity of applications illustrated in the book will suggest new possibilities
to you as well.

A third theme is to show how common computing operations are done. The
book contains a relational database system, an assembler and interpreter for a
toy computer, a graph-drawing language, a recursive-descent parser for an awk
subset, a file-update program based on make, and many other examples. In
each case, a short awk program conveys the essence of how something works in
a form that you can understand and play with.

We have also tried to illustrate a spectrum of ways to attack programming
problems. Rapid prototyping is an approach that awk supports well. A less
obvious strategy is divide and conquer: breaking a big job into small com
ponents, each concentrating on one aspect of the problem. Another is writing
programs that create other programs. Little languages define a good user inter
face and often suggest a sound implementation. Although these ideas are
presented here in the context of awk, they are much more generally applicable,
and ought to be part of every programmer's repertoire.

The examples have all been tested directly from the text, which is in
machine-readable form. We have tried to make the programs error-free, but we
have not added features nor made them proof against all possible invalid inputs,
preferring to concentrate on conveying the essentials.

Evolution of the AWK Language

Awk was originally designed and implemented by the authors in 1977, in
part as an experiment to see how the Unix tools grep and sed could be gen
eralized to deal with numbers as well as text. It was based on our interests in
regular expressions and programmable editors. Although it was meant for writ
ing very short programs, its combination of facilities soon attracted users who
wrote significantly larger programs. These larger programs needed features that
had not been part of the original implementation, so awk was enhanced in a new
version made available in 1985.

The major new feature is the ability for users to define their own functions.

vi THE A WK PROGRAMMING LANGUAGE PREFACE

Other enhancements include dynamic regular expressions, with text substitution
and pattern-matching functions; additional built-in functions and variables;
some new operators and statements; input from multiple files; and access to
command-line arguments. Error messages have also been improved. The exam
ples in Chapter 1 use only facilities of the original version; many examples in
later chapters take advantage of new features.

This version of awk is part of Unix System V Release 3.1. Source code for
this version is also available through AT &T's Unix System Toolchest software
distribution system; call 1-201-522-6900 and log in as guest. In Europe, con
tact AT&T Unix Europe in London (44-1-567-7711); in the Far East, contact
AT&T Unix Pacific in Tokyo (81-3-431-3670).

Since awk was developed under Unix, some of its features reflect capabilities
usually found only there; these features are used in some of our examples.
Furthermore, we have assumed the existence of some Unix utilities, particularly
sort, for which exact equivalents may not exist elsewhere. Aside from these
limitations, however, awk should be useful in any environment; in particular, it
runs on MS-DOS. Further information is available from Addison-Wesley.

Awk is certainly not perfect; it has its share of irregularities, omissions, and
just plain bad ideas, and it's sometimes painfully slow. But it's also a rich and
versatile language, useful in a remarkable number of cases. We hope you'll find
it as valuable as we do.

Acknowledgments

We are deeply indebted to friends who made comments and suggestions on
drafts of this book. We are particularly grateful to Jon Bentley, whose
enthusiasm has been an inspiration for years. Jon contributed many ideas and
programs derived from his experience using and teaching awk; he also read
several drafts with great care. Doug Mcilroy also deserves special recognition;
his peerless talent as a reader greatly improved the structure and content of the
whole book. Others who made helpful comments on the manuscript include
Susan Abo, Jaap Akkerhuis, Lorinda Cherry, Chris Fraser, Eric Grosse, Ric
cardo Gusella, Bob Herbst, Mark Kernighan, John Linderman, Bob Martin,
Howard Moscovitz, Gerard Schmitt, Don Swartwout, Howard Trickey, Peter
van Eijk, Chris VanWyk, and Mihalis Yannakakis. We thank them all.

Alfred V. Abo
Brian W. Kernighan
Peter J. Weinberger

CONTENTS

PREFACE .. iii

CHAPfER 1: AN A WK TUTORIAL ••.•.•.••••••••.•.•.•••.•••••••••••••••••••••••••••••.•....•.•••••••••••••••••• 1

1.1 Getting Started ... 1
The Structure of an A WK Program 2
Running an A WK Program ... 3
Errors ... 4

1.2 Simple Output .. 5
Printing Every Line .. 5
Printing Certain Fields ... 5
NF, the Number of Fields ... 6
Computing and Printing ... 6
Printing Line Numbers .. 6
Putting Text in the Output .. 7

1.3 Fancier Output ... 7
Lining Up Fields ... 7
Sorting the Output ... 8

1.4 Selection .. 9
Selection by Comparison .. 9
Selection by Computation .. 9
Selection by Text Content ... 9
Combinations of Patterns ... 10
Data Validation ... 10
BEGIN and END ... 11

1.5 Computing with A WK .. II
Counting .. 11
Computing Sums and Averages .. 12
Handling Text ... 12
String Concatenation .. 13
Printing the Last Input Line ... 13
Built-in Functions ... 13
Counting Lines, Words, and Characters .. 14

vii

viii THE A WK PROGRAMMING LANGUAGE CONTENTS

1.6 Control-Flow Statements ... 14
If-Else Statement .. 14
While Statement ... 15
For Statement ... 16

1.7 Arrays ... 16

1.8 A Handful of Useful "One-liners" ... 17

1.9 What Next? .. 19

CHAFfER 2: THE A WK LANGUAGE ... 21
The Input File countries .. 21
Program Format ... 22

2.1 Patterns ... 23
BEGIN and END ... 23
Expressions as Patterns .. 24
String-Matching Patterns .. 26
Regular Expressions ... 28
Compound Patterns .. 31
Range Patterns .. 32
Summary of Patterns ... 33

2.2 Actions .. 34
Expressions .. 34
Control-Flow Statements ... 47
Empty Statement .. 50
Arrays .. 50

2.3 User-Defined Functions ... 53

2.4 Output ... 54
The print Statement ... 55
Output Separators .. 56
The printf Statement ... 56
Output into Files ... 56
Output into Pipes .. 58
Closing Files and Pipes .. 59

2.5 Input .. 59
Input Separators ... 60
Multiline Records ... 60
The getline Function ... 61
Command-Line Variable Assignments ... 63
Command-Line Arguments ... 63

2.6 Interaction with Other Programs 64
The system Function ... 64
Making a Shell Command from an A WK Program 65

2. 7 Summary ... 66

THE AWK PROGRAMMING LANGUAGE CONTENTS ix

CHAPTER 3: DATA PROCESSING ...••.•••.••••••••.•••.•.•...•...•.•.•.•••••••••••••.•.•..•.•.•••••••••••••••• 67

3.1 Data Transformation and Reduction ... 67
Summing Columns ... 67
Computing Percentages and Quantiles ... 69
Numbers with Commas ... 71
Fixed-Field Input .. 72
Program Cross-Reference Checking ... 73
Formatted Output ... 74

3.2 Data Validation .. 76
Balanced Delimiters ... 77
Password-File Checking ... 78
Generating Data-Validation Programs ... 79
Which Version of A WK? .. 79

3.3 Bundle and Unbundle .. 81

3.4 Multiline Records ... 82
Records Separated by Blank Lines ... 82
Processing Multiline Records .. 84
Records with Headers and Trailers .. 85
Name-Value Data .. 86

3.5 Summary ... 88

CHAPl'ER 4: REPORTS AND DATABASES .. 89

4.1 Generating Reports .. 89
A Simple Report ... 89
A More Complex Report ... 92

4.2 Packaged Queries and Reports ... 99
Form Letters ... 100

4.3 A Relational Database System ... 102
Natural Joins .. 103
The relfile .. 106
q, an awk-like query language ... 107
qawk, a q-to-awk translator ... 108

4.4 Summary .. 110

CHAPTER 5: PROCESSING WORDS•.•........•.•.•.•.•.•.•.••••••••••••••••••••••••••••••.••••••.•.•. 111

5.1 Random Text Generation .. 111
Random Choices ... 111
Cliche Generation ... 112
Random Sentences .. 113

5.2 Interactive Text-Manipulation .. 116
Skills Testing: Arithmetic ... 116
Skills Testing: Quiz ... 11 7

X THE A WK PROGRAMMING LANGUAGE CONTENTS

5.3 Text Processing .. 119
Word Counts ... 119
Text Formatting .. 120
Maintaining Cross-References in Manuscripts .. 120
Making a KWIC Index , .. 122
Making Indexes .. 124

5.4 Summary .. 130

CHAP'fER 6: LITILE LANGUAGES ••. 131

6.1 An Assembler and Interpreter .. 132

6.2 A Language for Drawing Graphs ... 135

6.3 A Sort Generator ... 140

6.4 A Reverse-Polish Calculator ... 142

6.5 An Infix Calculator ... 145

6.6 Recursive-Descent Parsing .. 147

6.7 Summary .. 152

CHAP'fER 7: EXPERIMENTS WITH ALGORITHMS ... 153

7.1 Sorting ... 153
Insertion Sort .. 153
Quicksort ... 160
Heapsort .. 162

7.2 Profiling .. 167

7.3 Topological Sorting .. 170
Breadth-First Topological Sort .. 171
Depth-First Search ... 172
Depth-First Topological Sort ... 173

7.4 Make: A File Updating Program .. 175

7.5 Summary .. 179

CHAP'fER 8: EPILOG .. 181

8.1 AWK as a Language ... 181

8.2 Performance .. 183

8.3 Conclusion .. 185

APPENDIX A: A WK SUMMARY ••••••••.••••••••••....••••.••••.•••••••••••••••••••••••.••••••.•.•.••••••••.•• 187

APPENDIX 8: ANSWERS TO SELECTED EXERCISES 193

INDEX •••••••••••••••••••••..••••.••••••.•.••••.••••.•••••••••••••.••.••••.••••.•••••••••••••••••••••••••••.•...••••.••••••••••••••• 205

1 AN A WK TUTORIAL

Awk is a convenient and expressive programming language that can be
applied to a wide variety of computing and data-manipulation tasks. This
chapter is a tutorial, designed to let you start writing your own programs as
quickly as possible. Chapter 2 describes the whole language, and the remaining
chapters show how awk can be used to solve problems from many different
areas. Throughout the book, we have tried to pick examples that you should
find useful, interesting, and instructive.

1. 1 Getting Started
Useful awk programs are often short, just a line or two. Suppose you have a

file called emp.data that contains the name, pay rate in dollars per hour, and
number of hours worked for your employees, one employee record per line, like
this:

Beth 4.00 0
Dan 3.75 0
Kathy 4.00 10
Mark 5.00 20
Mary 5.50 22
Susie 4.25 18

Now you want to print the name and pay (rate times hours) for everyone who
worked more than zero hours. This is the kind of job that awk is meant for, so
it's easy. Just type this command line:

awk '$3 > 0 { print $1, $2 * $3 }' emp.data

You should get this output:

Kathy 40
Mark 100
Mary 121
Susie 76.5

This command line tells the system to run awk, using the program inside the

2 AN A WK TUTORIAL CHAPTER I

quote characters, taking its data from the input file emp. data. The part inside
the quotes is the complete awk program. It consists of a single pattern-action
statement. The pattern, $3 > 0, matches every input line in which the third
column, or field, is greater than zero, and the action

{ print $1, $2 * $3 }

prints the first field and the product of the second and third fields of each
matched line.

If you want to print the names of those employees who did not work, type
this command line:

awk '$3 == 0 { print $1 }' emp.data

Here the pattern, $3 == 0, matches each line in which the third field is equal
to zero, and the action

{ print $1 }

prints its first field.
As you read this book, try running and modifying the programs that are

presented. Since most of the programs are short, you'll quickly get an under
standing of how awk works. On a Unix system, the two transactions above
would look like this on the terminal:

$ awk '$3 > 0 { print $1, $2 * $3 }' emp.data
Kathy 40
Mark 100
Mary 121
Susie 76.5
$ awk '$3 == 0 { print $1 }' emp.data
Beth
Dan
$

The $ at the beginning of a line is the prompt from the system; it may be dif
ferent on your machine.

The Structure of an AWK Program

Let's step back a moment and look at what is going on. In the command
lines above, the parts between the quote characters are programs written in the
awk programming language. Each awk program in this chapter is a sequence of
one or more pattern-action statements:

pattern { action }
pattern { action }

The basic operation of awk is to scan a sequence of input lines one after
another, searching for lines that are matched by any of the patterns in the pro
gram. The precise meaning of the word "match" depends on the pattern in

SECTION 1.1 GETTING STARTED 3

question; for patterns like $3 > 0, it means "the condition is true."
Every input line is tested against each of the patterns in turn. For each pat

tern that matches, the corresponding action (which may involve multiple steps)
is performed. Then the next line is read and the matching starts over. This
continues until all the input has been read.

The programs above are typical examples of patterns and actions.

$3 == 0 { print $1 }

is a single pattern-action statement; for every line in which the third field is
zero, the first field is printed.

Either the pattern or the action (but not both) in a pattern-action statement
may be omitted. If a pattern has no action, for example,

$3 == 0

then each line that the pattern matches (that is, each line for which the condi
tion is true) is printed. This program prints the two lines from the emp. data
file where the third field is zero:

Beth
Dan

4.00
3.75

0
0

If there is an action with no pattern, for example,

{ print $1 }

then the action, in this case printing the first field, is performed for every input
line.

Since patterns and actions are both optional, actions are enclosed in braces
to distinguish them from patterns.

Running an AWK Program

There are several ways to run an awk program. You can type a command
line of the form

awk 'program' input files

to run the program on each of the specified input files. For example, you could
type

awk '$3 == 0 { print $1 }' file1 file2

to print the first field of every line of file 1 and file2 in which the third
field is zero.

You can omit the input files from the command line and just type

awk 'program '

In this case awk will apply the program to whatever you type next on your ter
minal until you type an end-of-file signal (control-d on Unix systems). Here is
a sample of a session on Unix:

4 AN A WK TUTORIAL CHAPTER I

$ awk '$3 == 0 { print $1 } ,
Beth 4.00 0
Beth
Dan 3.75 0
Dan
Kathy 3.75 10
Kathy 3.75 0
Kathy

The heavy characters are what the computer printed.
This behavior makes it easy to experiment with awk: type your program,

then type data at it and see what happens. We again encourage you to try the
examples and variations on them.

Notice that the program is enclosed in single quotes on the command line.
This protects characters like $ in the program from being interpreted by the
shell and also allows the program to be longer than one line.

This arrangement is convenient when the program is short (a few lines). If
the program is long, however, it is more convenient to put it into a separate file,
say progfile, and type the command line

awk -f progfile optional list of input files

The -f option instructs awk to fetch the program from the named file. Any
filename can be used in place of progfile.

Errors

If you make an error in an awk program, awk will give you a diagnostic
message. For example, if you mistype a brace, like this:

awk '$3 == 0 [print $1 }' emp.data

you will get a message like this:

awk: syntax error at source line 1
context is

$3 == 0 >>> [<<<
extra }
missing

awk: bailing out at source line 1

"Syntax error" means that you have made a grammatical error that was
detected at the place marked by >>> <<<. "Bailing out" means that no
recovery was attempted. Sometimes you get a little more help about what the
error was, such as a report of mismatched braces or parentheses.

Because of the syntax error, awk did not try to execute this program. Some
errors, however, may not be detected until your program is running. For exam
ple, if you attempt to divide a number by zero, awk will stop its processing and
report the input line number and the line number in the program at which the
division was attempted.

SECTION 1.2 SIMPLE OUTPUT 5

1.2 Simple Output
The rest of this chapter contains a collection of short, typical awk programs

based on manipulation of the emp o data file above. We'll explain briefly
what's going on, but these examples are meant mainly to suggest useful opera
tions that are easy to do with awk - printing fields, selecting input, and
transforming data. We are not showing everything that awk can do by any
means, nor are we going into many details about the specific things presented
here. But by the end of this chapter, you will be able to accomplish quite a bit,
and you'll find it much easier to read the later chapters.

We will usually show just the program, not the whole command line. In
every case, the program can be run either by enclosing it in quotes as the first
argument of the awk command, as shown above, or by putting it in a file and
invoking awk on that file with the -f option.

There are only two types of data in awk: numbers and strings of characters.
The emp 0 data file is typical of this kind of information - a mixture of words
and numbers separated by blanks and/or tabs.

Awk reads its input one line at a time and splits each line into fields, where,
by default, a field is a sequence of characters that doesn't contain any blanks or
tabs. The first field in the current input line is called $1, the second $2, and so
forth. The entire line is called $0. The number of fields can vary from line to
line.

Often, all we need to do is print some or all of the fields of each line,
perhaps performing some calculations. The programs in this section are all of
that form.

Printing Every Line

If an action has no pattern, the action is performed for all input lines. The
statement print by itself prints the current input line, so the program

{ print }

prints all of its input on the standard output. Since $0 is the whole line,

{ print SO }

does the same thing.

Printing Certain Fields

More than one item can be printed on the same output line with a single
print statement. The program to print the first and third fields of each input
line is

{ print $1, $3 }

With emp. data as input, it produces

6 AN A WK TUTORIAL

Beth 0
Dan 0
Kathy 10
Mark 20
Mary 22
Susie 18

CHAPTER J

Expressions separated by a comma in a print statement are, by default,
separated by a single blank when they are printed. Each line produced by
print ends with a newline character. Both of these defaults can be changed;
we'll show how in Chapter 2.

NF, the Number of Fields

It might appear you must always refer to fields as $1, $2, and so on, but
any expression can be used after $ to denote a field number; the expression is
evaluated and its numeric value is used as the field number. Awk counts the
number of fields in the current input line and stores the count in a built-in vari
able called NF. Thus, the program

{ print NF, $1, $NF }

prints the number of fields and the first and last fields of each input line.

Computing and Printing

You can also do computations on the field values and include the results in
what is printed. The program

{ print $1, $2 * $3 }

is a typical example. It prints the name and total pay (rate times hours) for
each employee:

Beth 0
Dan 0
Kathy 40
Mark 100
Mary 121
Susie 76.5

We'll show in a moment how to make this output look better.

Printing Line Numbers

Awk provides another built-variable, called NR, that counts the number of
lines read so far. We can use NR and $0 to prefix each line of emp. data with
its line number:

{ print NR, $0 }

The output looks like this:

SECTION 1.3 FANCIER OUTPUT 7

1 Beth 4.00 0
2 Dan 3.75 0
3 Kathy 4.00 10
4 Mark 5.00 20
5 Mary 5.50 22
6 Susie 4.25 18

Putting Text in the Output

You can also print words in the midst of fields and computed values:

{ print "total pay for", $1, "is", $2 * $3 }

prints

total pay for Beth is 0
total pay for Dan is 0
total pay for Kathy is 40
total pay for Mark is 100
total pay for Mary is 121
total pay for Susie is 76.5

In the print statement, the text inside the double quotes is printed along with
the fields and computed values.

1.3 Fancier Output
The print statement is meant for quick and easy output. To format the

output exactly the way you want it, you may have to use the print£ state
ment. As we shall see in Section 2.4, print£ can produce almost any kind of
output, but in this section we'll only show a few of its capabilities.

Lining Up Fields

The print£ statement has the form

printf (format, value 1 , value 2 , ••• , value,)

where format is a string that contains text to be printed verbatim, interspersed
with specifications of how each of the values is to be printed. A specification is
a % followed by a few characters that control the format of a value. The first
specification tells how value 1 is to be printed, the second how value 2 is to be
printed, and so on. Thus, there must be as many % specifications in format as
values to be printed.

Here's a program that uses print£ to print the total pay for every
employee:

{ printf("total pay for %s is $%.2f\n", $1, $2 * $3) }

The specification string in the print£ statement contains two % specifications.

8 AN A WK TUTORIAL CHAPTER I

The first, %s, says to print the first value, $1, as a string of characters; the
second, %. 2£, says to print the second value, $2*$3, as a number with 2 digits
after the decimal point. Everything else in the specification string, including the
dollar sign, is printed verbatim; the \n at the end of the string stands for a new
line, which causes subsequent output to begin on the next line. With
emp. data as input, this program yields:

total pay for Beth is $0.00
total pay for Dan is $0.00
total pay for Kathy is $40.00
total pay for Mark is $100.00
total pay for Mary is $121.00
total pay for Susie is $76.50

With print£, no blanks or newlines are produced automatically; you must
create them yourself. Don't forget the \n.

Here's another program that prints each employee's name and pay:

{ printf("%-8s $%6.2f\n", $1, $2 * $3) }

The first specification, %-Ss, prints a name as a string of characters left
justified in a field 8 characters wide. The second specification, %6. 2f, prints
the pay as a number with two digits after the decimal point, in a field 6 charac
ters wide:

Beth
Dan
Kathy
Mark
Mary
Susie

$ 0.00
$ 0.00
$ 40.00
$100.00
$121.00
$ 76.50

We'll show lots more examples of print£ as we go along; the full story is in
Section 2.4.

Sorting the Output

Suppose you want to print all the data for each employee, along with his or
her pay, sorted in order of increasing pay. The easiest way is to use awk to pre
fix the total pay to each employee record, and run that output through a sorting
program. On Unix, the command line

awk '{ printf("%6.2f %s\n", $2 * $3, $0) }' emp.data sort

pipes the output of awk into the sort command, and produces:

SECTION 1.4 SELECTION 9

0.00 Beth 4.00 0
0.00 Dan 3.75 0

40.00 Kathy 4.00 10
76.50 Susie 4.25 18

100.00 Mark 5.00 20
121.00 Mary 5.50 22

1.4 Selection
Awk patterns are good for selecting interesting lines from the input for

further processing. Since a pattern without an action prints all lines matching
the pattern, many awk programs consist of nothing more than a single pattern.
This section gives some examples of useful patterns.

Selection by Comparison

This program uses a comparison pattern to select the records of employees
who earn $5.00 or more per hour, that is, lines in which the second field is
greater than or equal to 5:

$2 >= 5

It selects these lines from emp. data:

Mark
Mary

5.00
5.50

20
22

Selection by Computation

The program

$2 * $3 > 50 { printf("$%.2f for %s\n", $2 * $3, $1) }

prints the pay of those employees whose total pay exceeds $50:

$100.00 for Mark
$121.00 for Mary
$76.50 for Susie

Selection by Text Content

Besides numeric tests, you can select input lines that contain specific words
or phrases. This program prints all lines in which the first field is Susie:

$1 == "Susie"

The operator ==tests for equality. You can also look for text containing any of
a set of letters, words, and phrases by using patterns called regular expressions.
This program prints all lines that contain Susie anywhere:

10 AN A WK TUTORIAL CHAPTER I

/Susie/

The output is this line:

Susie 4.25 18

Regular expressions can be used to specify much more elaborate patterns; Sec
tion 2.1 contains a full discussion.

Combinations of Patterns

Patterns can be combined with parentheses and the logical operators &&,
and I, which stand for AND, OR, and NOT. The program

$2 >= 4 : : $3 >= 20

prints those lines where $2 is at least 4 or $3 is at least 20:

Beth 4.00 0
Kathy 4.00 10
Mark 5.00 20
Mary 5.50 22
Susie 4.25 18

I I
I I,

Lines that satisfy both conditions are printed only once. Contrast this with the
following program, which consists of two patterns:

$2 >= 4
$3 >= 20

This program prints an input line twice if it satisfies both conditions:

Beth 4.00 0
Kathy 4.00 10
Mark 5.00 20
Mark 5.00 20
Mary 5.50 22
Mary 5.50 22
Susie 4.25 18

Note that the program

I ($2 < 4 &.&. $3 < 20)

prints lines where it is not true that $2 is less than 4 and $3 is less than 20;
this condition is equivalent to the first one above, though perhaps less readable.

Data Validation

There are always errors in real data. Awk is an excellent tool for checking
that data has reasonable values and is in the right format, a task that is often
called data validation.

Data validation is essentially negative: instead of printing lines with desirable
properties, one prints lines that are suspicious. The following program uses

SECTION 1.5 COMPUTING WITH A WK 11

comparison patterns to apply five plausibility tests to each line of emp. data:

NF I= 3 { print $0, "number of fields is not equal to 3" }
$2 < 3.35 { print SO, "rate is below minimum wage" }
$2 > 10 { print $0, "rate exceeds $10 per hour" }
$3 < 0 { print $0, "negative hours worked" }
$3 > 60 { print $0, "too many hours worked" }

If there are no errors, there's no output.

BEGIN and END

The special pattern BEGIN matches before the first line of the first input ·file
is read, and END matches after the last line of the last file has been processed.
This program uses BEGIN to print a heading:

BEGIN { print "NAME
{ print }

The output is:

NAME

Beth
Dan
Kathy
Mark
Mary
Susie

RATE

4.00
3.75
4.00
5.00
5.50
4.25

HOURS

0
0
10
20
22
18

RATE HOURS"; print "" }

You can put several statements on a single line if you separate them by semi·
colons. Notice that print "" prints a blank line, quite different from just
plain print, which prints the current input line.

1.5 Computing with A WK
An action is a sequence of statements separated by newlines or semicolons.

You have already seen examples in which the action was a single print state
ment. This section provides examples of statements for performing simple
numeric and string computations. In these statements you can use not only the
built-in variables like NF, but you can create your own variables for performing
calculations, storing data, and the like. In awk, user-created variables are not
declared.

Counting

This program uses a variable emp to count employees who have worked more
than 15 hours:

12 AN A WK TUTORIAL CHAPTER I

$3 > 15 { emp = emp + 1 }
END { print emp, "employees worked more than 15 hours" }

For every line in which the third field exceeds 15, the previous value of emp is
incremented by 1. With emp. data as input, this program yields:

3 employees worked more than 15 hours

Awk variables used as numbers begin life with the value 0, so we didn't need to
initialize emp.

Computing Sums and Averages

To count the number of employees, we can use the built-in variable NR,
which holds the number of lines read so far; its value at the end of all input is
the total number of lines read.

END { print NR, "employees" }

The output is:

6 employees

Here is a program that uses NR to compute the average pay:

{ pay = pay + $2 * $3 }
END { print NR, "employees"

print "total pay is", pay
print "average pay is", pay/NR

The first action accumulates the total pay for all employees. The END action
prints

6 employees
total pay is 337.5
average pay is 56.25

Clearly, print£ could be used to produce neater output. There's also a poten
tial error: in the unlikely case that NR is zero, the program will attempt to
divide by zero and thus will generate an error message.

Handling Text

One of the strengths of awk is its ability to handle strings of characters as
conveniently as most languages handle numbers. Awk variables can hold strings
of characters as well as numbers. This program finds the employee who is paid
the most per hour:

$2 > maxrate { maxrate = $2; maxemp = $1 }
END { print "highest hourly rate:", maxrate, "for", maxemp }

It prints

SECTION 1.5 COMPUTING WITH A WK 13

highest hourly rate: 5.50 for Mary

In this program the variable maxrate holds a numeric value, while the variable
maxemp holds a string. (If there are several employees who all make the same
maximum pay, this program finds only the first.}

String Concatenation

New strings may be created by combining old ones; this operation is called
concatenation. The program

{ names = names $1 " " }
END { print names }

collects all the employee names into a single string, by appending each name
and a blank to the previous value in the variable names. The value of names
is printed by the END action:

Beth Dan Kathy Mark Mary Susie

The concatenation operation is represented in an awk program by writing string
values one after the other. At every input line, the first statement in the pro
gram concatenates three strings: the previous value of names, the first field,
and a blank; it then assigns the resulting string to names. Thus, after all input
lines have been read, names contains a single string consisting of the names of
all the employees, each followed by a blank. Variables used to store strings
begin life holding the null string (that is, the string containing no characters), so
in this program names did not need to be explicitly initialized.

Printing the Last Input Line

Although NR retains its value in an END action, $0 does not. The program

{ last = $0 }
END { print last }

is one way to print the last input line:

Susie 4.25 18

Built-in Functions

We have already seen that awk provides built-in variables that maintain fre
quently used quantities like the number of fields and the input line number.
Similarly, there are built-in functions for computing other useful values.
Besides arithmetic functions for square roots, logarithms, random numbers, and
the like, there are also functions that manipulate text. One of these is length,
which counts the number of characters in a string. For example, this program
computes the length of each person's name:

14 AN A WK TUTORIAL

{ print $1, length($1) }

The result:

Beth 4
Dan 3
Kathy 5
Mark 4
Mary 4
Susie 5

Counting Lines, Words, and Characters

CHAPTER J

This program uses length, NF, and NR to count the number of lines, words,
and characters in the input. For convenience, we'll treat each field as a word.

{ nc = nc + length($0) + 1
nw = nw + NF

END print NR, "lines, .. , nw, 11 words,", nc, 11 Characters" }

The file emp. data has

6 lines, 18 words, 77 characters

We have added one for the newline character at the end of each input line,
since $0 doesn't include it.

1.6 Control-Flow Statements
Awk provides an if-else statement for making decisions and several state

ments for writing loops, all modeled on those found in the C programming
language. They can only be used in actions.

If-Else Statement

The following program computes the total and average pay of employees
making more than $6.00 an hour. It uses an if to defend against division by
zero in computing the average pay.

$2 > 6 { n = n + 1; pay = pay + $2 * $3
END { if (n > 0)

else

print n, .. employees, total pay is 11
, pay,

"average pay is 11
, pay/n

print "no employees are paid more than $6/hour 11

The output for emp. data is:

SECTION 1.6 CONTROL-FLOW STATEMENTS 15

no employees are paid more than $6/hour

In the if-else statement, the condition following the if is evaluated. If it is
true, the first print statement is performed. Otherwise, the second print
statement is performed. Note that we can continue a long statement over
several lines by breaking it after a comma.

While Statement

A while statement has a condition and a body. The statements in the body
are performed repeatedly while the condition is true. This program shows how
the value of an amount of money invested at a particular interest rate grows
over a number of years, using the formula value ""'" amount (I +rate)years.

interest1 - compute compound interest
input: amount rate years
output: compounded value at the end of each year

i = 1
while (i <= $3) {

printf("\t%.2£\n", $1 * (1 + $2) "'i)
i = i + 1

The condition is the parenthesized expression after the while; the loop body is
the two statements enclosed in braces after the condition. The \. t in the
printf specification string stands for a tab character; the " is the exponentia
tion operator. Text from a # to the end of the line is a comment, which is
ignored by awk but should be helpful to readers of the program who want to
understand what is going on.

You can type triplets of numbers at this program to see what various
amounts, rates, and years produce. For example, this transaction shows how
$1000 grows at 6% and 12% compound interest for five years:

$ awk -f interest1
1000 .06 5

1060.00
1123.60
1191.02
1262.48
1338.23

1000 .12 5
1120.00
1254.40
1404.93
1573.52
1762.34

16 AN A WK TUTORIAL CHAPTER I

For Statement

Another statement, for, compresses into a single line the initialization, test,
and increment that are part of most loops. Here is the previous interest compu
tation with a for:

interest2 - compute compound interest
input: amount rate years
output: compounded value at the end of each year

for (i ; 1; i <; $3; i i + 1)
printf("\t%.2f\n", $1 * (1 + $2) A i)

The initialization i = 1 is performed once. Next, the condition i <= $3 is
tested; if it is true, the print£ statement, which is the body of the loop, is per
formed. Then the increment i = i + 1 is performed after the body, and the
next iteration of the loop begins with another test of the condition. The code is
more compact, and since the body of the loop is only a single statement, no
braces are needed to enclose it.

1.7 Arrays
Awk provides arrays for storing groups of related values. Although arrays

give awk considerable power, we will show only a simple example here. The fol
lowing program prints its input in reverse order by line. The first action puts
the input lines into successive elements of the array line; that is, the first line
goes into 1 ine [1] , the second line into 1 ine [2], and so on. The END action
uses a while statement to print the lines from the array from last to first:

reverse - print input in reverse order by line

line(NR] ; $0 } # remember each input line

END i ; NR # print lines in reverse order
while (i > 0) {

print line[i]
i ; i - 1

With emp. data, the output is

Susie
Mary
Mark
Kathy
Dan
Beth

4.25
5.50
5.00
4.00
3.75
4.00

18
22
20
10
0
0

SECTION 1.8 A HANDFUL OF USEFUL ONE-LINERS 17

Here is the same example with a for statement:

reverse - print input in reverse order by line

line[NR] = $0 } # remember each input line

END for (i = NR; i > 0; i = i - 1)
print line(i]

1.8 A Handful of Useful "One-liners"
Although awk can be used to write programs of some complexity, many use

ful programs are not much more complicated than what we've seen so far. Here
is a collection of short programs that you might find handy and/or instructive.
Most are variations on material already covered.

1. Print the total number of input lines:

END { print NR }

2. Print the tenth input line:

NR == 10

3. Print the last field of every input line:

{ print $NF }

4. Print the last field of the last input line:

{ field = $NF}
END { print field }

5. Print every input line with more than four fields:

NF > 4

6. Print every input line in which the last field is more than 4:

$NF > 4

7. Print the total number of fields in all input lines:

{ nf ::: nf + NF }
END { print nf }

8. Print the total number of lines that contain Beth:

/Beth/ { nlines = nlines + 1 }
END { print nlines }

I 8 AN A WK TUTORIAL CHAPTER 1

9. Print the largest first field and the line that contains it (assumes some
$1 is positive):

$1 > max { max = $1; maxline ~ $0
END { print max, maxline }

10. Print every line that has at least one field:

NF > 0

11. Print every line longer than 80 characters:

length($0) > 80

12. Print the number of fields in every line followed by the line itself:

{ print NF, $0 }

13. Print the first two fields, in opposite order, of every line:

{ print $2, $1 }

14. Exchange the first two fields of every line and then print the line:

{ temp = $1; $1 ~ $2; $2 = temp; print }

15. Print every line with the first field replaced by the line number:

{ $1 = NR; print }

16. Print every line after erasing the second field:

{ $2 = ""; print }

17. Print in reverse order the fields of every line:

for (i = NF; i > 0; i = i - 1) printf("%s " $i)
printf ("\n")

18. Print the sums of the fields of every line:

sum= 0
for (i = 1; i <= NF; i = i + 1) sum sum + $i
print sum

19. Add up all fields in all lines and print the sum:

{ for (i = 1; i <= NF; i = i + 1) sum= sum+ Si }
END { print sum }

20. Print every line after replacing each field by its absolute value:

for (i = 1; i <= NF; i = i + 1) if ($i < 0) Si -$i
print

SECTION 1.9 WHATNEXT'? 19

1.9 What Next?
You have now seen the essentials of awk. Each program in this chapter has

been a sequence of pattern-action statements. Awk tests every input line
against the patterns, and when a pattern matches, performs the corresponding
action. Patterns can involve numeric and string comparisons, and actions can
include computation and formatted printing. Besides reading through your
input files automatically, awk splits each input line into fields. It also provides
a number of built-in variables and functions, and lets you define your own as
well. With this combination of features, quite a few useful computations can be
expressed by short programs - many of the details that would be needed in
another language are handled implicitly in an awk program.

The rest of the book elaborates on these basic ideas. Since some of the
examples are quite a bit bigger than anything in this chapter, we encourage you
strongly to begin writing programs as soon as possible. This will give you famil
iarity with the language and make it easier to understand the larger programs.
Furthermore, nothing answers questions so well as some simple experiments.
You should also browse through the whole book; each example conveys some
thing about the language, either about how to use a particular feature, or how
to create an interesting program.

2 THE AWK LANGUAGE

This chapter explains, mostly with examples, the constructs that make up
awk programs. Because it's a description of the complete language, the material
is detailed, so we recommend that you skim it, then come back as necessary to
check up on details.

The simplest awk program is a sequence of pattern-action statements:

pattern
pattern

action }
{ action }

In some statements, the pattern may be missing; in others, the action and its
enclosing braces may be missing. After awk has checked your program to make
sure there are no syntactic errors, it reads the input a line at a time, and for
each line, evaluates the patterns in order. For each pattern that matches the
current input line, it executes the associated action. A missing pattern matches
every input line, so every action with no pattern is performed at each line. A
pattern-action statement consisting only of a pattern prints each input line
matched by the pattern. Throughout most of this chapter, the terms "input
line" and "record" are used synonymously. In Section 2.5, we will discuss
multiline records, where a record may contain several lines.

The first section of this chapter describes patterns in detail. The second sec
tion begins the description of actions by describing expressions, assignments, and
control-flow statements. The remaining sections cover function definitions, out
put, input, and how awk programs can call other programs. Most sections con
tain summaries of major features.

The Input File countries

As input for many of the awk programs in this chapter, we will use a file
called countries. Each line contains the name of a country, its area in
thousands of square miles, its population in millions, and the continent it is in.
The data is from 1984; the USSR has been arbitrarily placed in Asia. In the
file, the four columns are separated by tabs; a single blank separates North and
South from America.

21

22 THE A WK LANGUAGE CHAPTER 2

The file countries contains the following lines:

USSR 8649 275 Asia
Canada 3852 25 North America
China 3705 1032 Asia
USA 3615 237 North America
Brazil 3286 134 South America
India 1267 746 Asia
Mexico 762 78 North America
France 211 55 Europe
Japan 144 120 Asia
Germany 96 61 Europe
England 94 56 Europe

For the rest of this chapter, the countries file is used when no input file is
mentioned explicitly.

Program Format

Pattern-action statements and the statements within an action are usually
separated by newlines, but several statements may appear on one line if they are
separated by semicolons. A semicolon may be put at the end of any statement.

The opening brace of an action must be on the same line as the pattern it
accompanies; the remainder of the action, including the closing brace, may
appear on the following lines.

Blank lines are ignored; they may be inserted before or after any statement
to improve the readability of a program. Blanks and tabs may be inserted
around operators and operands, again to enhance readability.

Comments may be inserted at the end of any line. A comment starts with
the character # and finishes at the end of the line, as in

{ print S1, $3 } I print country name and population

A long statement may be spread over several lines by inserting a backslash
and newline at each break:

{ print \
$1,
$2,
$3 }

country name
area in thousands of square miles
population in millions

As this example shows, statements may also be broken after commas, and a
comment may be inserted at the end of each broken line.

In this book we have used several formatting styles, partly to illustrate dif
ferent ones, and partly to keep programs from occupying too many lines. For
short programs like those in this chapter, format doesn't much matter, but con
sistency and readability will help to keep longer programs manageable.

SECTION 2.1 PATTERNS 23

2.1 Patterns
Patterns control the execution of actions: when a pattern matches, its associ

ated action is executed. This section describes the six types of patterns and the
conditions under which they match.

Summary of Patterns
1. BEGIN { statements }

The statements are executed once before any input has been read.

2. END { statements }
The statements are executed once after all input has been read.

3. expression { statements }
The statements are executed 'lt each input line where the expression is true, that is,
nonzero or nonnull.

4. /regular expression I { statements }
The statements are executed at each input line that contains a string matched by the
regular expression.

5. compound pattern { statements }
A compound pattern combines expressions with && (AND), II (OR), I (NOT), and
parentheses; the statements are executed at each input line where the compound
pattern is true.

6. pattern 1 , pattern 2 { statements }
A range pattern matches each input line from a line matched by pattern 1 to the next
line matched by pattern 2, inclusive; the statements are executed at each matching
line.

BEGIN and END do not combine with other patterns. A range pattern cannot be part of
any other pattern. BEGIN and END are the only patterns that require an action.

BEGIN and END

The BEGIN and END patterns do not match any input lines. Rather, the
statements in the BEGIN action are executed before awk reads any input; the
statements in the END action are executed after all input has been read. BEGIN
and END thus provide a way to gain control for initialization and wrapup.
BEGIN and END do not combine with other patterns. If there is more than one
BEGIN, the associated actions are executed in the order in which they appear in
the program, and similarly for multiple END's. Although it's not mandatory, we
put BEGIN first and END last.

One common use of a BEGIN action is to change the default way that input
lines are split into fields. The field separator is controlled by a built-in variable

24 THE A WK LANGUAGE CHAPTER 2

called FS. By default, fields are separated by blanks and/or tabs; this behavior
occurs when FS is set to a blank. Setting FS to any character other than a
blank makes that character the field separator.

The following program uses the BEGIN action to set the field separator to a
tab character (\ t) and to put column headings on the output. The second
print£ statement, which is executed at each input line, formats the output into
a table, neatly aligned under the column headings. The END action prints the
totals. (Variables and expressions are discussed in Section 2.2.)

print countries with column headers and totals

BEGIN { FS = "\t" # make tab the field separator
printf("%10s %6s %5s %s\n\n",

"COUNTRY", "AREA", "POP", "CONTINENT")

printf{"%10s %6d %5d %s\n", $1, $2, $3, $4)
area = area + $2
pop = pop + $3

END print£("\n%10s %6d %5d\n", "TOTAL", area, pop) }

With the countries file as input, this program produces

COUNTRY AREA POP CONTINENT

USSR 8649 275 Asia
Canada 3852 25 North America

China 3705 1032 Asia
USA 3615 237 North America

Brazil 3286 134 South America
India 1267 746 Asia

Mexico 762 78 North America
France 211 55 Europe
Japan 144 120 Asia

Germany 96 61 Europe
England 94 56 Europe

TOTAL 25681 2819

Expressions as Patterns

Like most programming languages, awk is rich in expressions for describing
numeric computations. Unlike many flanguages, awk also has expressions for
describing operations on strings. Thrm\ghout this book, the term string means a
sequence of zero or more characters. These may be stored in variables, or
appear literally as string constants like '"' or "Asia". The string "", which
contains no characters, is called the null string. The term substring means a
contiguous sequence of zero or more characters within a string. In every string,
the null string appears as a substring of length zero before the first character,
between every pair of adjacent characters, and after the last character.

SECTION 2.1 PATTERNS 25

Any expression can be used as an operand of any operator. If an expression
has a numeric value but an operator requires a string value, the numeric value
is automatically transformed into a string; similarly, a string is converted into a
number when an operator demands a numeric value.

Any expression can be used as a pattern. If an expression used as a pattern
has a nonzero or nonnull value at the current input line, then the pattern
matches that line. The typical expression patterns are those involving comparis
ons between numbers or strings. A comparison expression contains one of the
six relational operators, or one of the two string-matching operators - (tilde)
and I- that will be discussed in the next section. These operators are listed in
Table 2-1.

TABLE 2-1. COMPARISON OPERATORS

OPERATOR MEANING

< less than
<= less than or equal to

equal to
l= not equal to
>= greater than or equal to
> greater than

matched by
t- not matched by

If the pattern is a comparison expression like NF> 1 0, then it matches the
current input line when the condition is satisfied, that is, when the number of
fields in the line is greater than ten. If the pattern is an arithmetic expression
like NF, it matches the current input line when its numeric value is nonzero. If
the pattern is a string expression, it matches the current input line when the
string value of the expression is nonnull.

In a relational comparison, if both operands are numeric, a numeric com
parison is made; otherwise, any numeric operand is converted to a string, and
then the operands are compared as strings. The strings are compared character
by character using the ordering provided by the machine, most often the ASCII
character set. One string is said to be "less than" another if it would appear
before the other according to this ordering, e.g., "Canada" < "China" and
"Asia"< "Asian".

The pattern

$3/$2 >= 0.5

selects lines where the value of the third field divided by the second is numeri
cally greater than or equal to 0.5, while

26 THE A WK LANGUAGE

$0 >= "M"

selects lines that begin with an M, N, o, etc.:

USSR 8649
USA 3615
Mexico 762

275
237
78

Asia
North America
North America

CHAPTER 2

Sometimes the type of a comparison operator cannot be determined solely by
the syntax of the expression in which it appears. The program

$1 < $4

could compare the first and fourth fields of each input line either as numbers or
as strings. Here, the type of the comparison depends on the values of the fields,
and it may vary from line to line. In the countries file, the first and fourth
fields are always strings, so string comparisons are always made; the output is

Canada 3852
Brazil 3286
Mexico 762
England 94

25
134
78
56

North America
South America
North America
Europe

Only if both fields are numbers is the comparison done numerically; this would
be the case with

$2 < $3

on the same data.
Section 2.2 contains a more complete discussion of strings, numbers, and

expressions.

String-Matching Patterns

Awk provides a notation called regular expressions for specifying and
matching strings of characters. Regular expressions are widely used in Unix
programs, including its text editors and shell. Restricted forms of regular
expressions also occur in systems like MS-DOS as "wild-card characters" for
specifying sets of filenames.

A string-matching pattern tests whether a string contains a substring
matched by a regular expression.

The simplest regular expression is a string of letters and numbers, like Asia,
that matches itself. To turn a regular expression into a string-matching pattern,
just enclose it in slashes:

/Asia/

This pattern matches when the current input line contains the substring Asia,
either as Asia by itself or as some part of a larger word like Asian or
Pan-Asiatic. Note that blanks are significant within regular expressions: the
string-matching pattern

SECTION 2.1 PATTERNS 27

String-Matching Patterns
1. /regexpr /

Matches when the current input line contains a substring matched by regexpr.

2. expression - /regexpr /
Matches if the string value of expression contains a substring matched by regexpr.

3. expression I - /regexpr /
Matches if the string value of expression does not contain a substring matched by
regexpr.

Any expression may be used in place of /regexpr / in the context of - and I -.

/ Asia /

matches only when Asia is surrounded by blanks.
The pattern above is one of three types of string-matching patterns. Its form

is a regular expression r enclosed in slashes:

/r/

This pattern matches an input line if the line contains a substring matched by r.
The other two types of string-matching patterns use an explicit matching

operator:

expression - /r/
expression I - /r /

The matching operator - means "is matched by" and 1- means "is not
matched by." The first pattern matches when the string value of expression
contains a substring matched by the regular expression r; the second pattern
matches if there is no such substring.

The left operand of a matching operator is often a field: the pattern

$4 - /Asia/

matches all input lines in which the fourth field contains Asia as a substring,
while

$4 1- /Asia/

matches if the fourth field does not contain Asia anywhere.
Note that the string-matching pattern

/Asia/

is a shorthand for

SO - /Asia/

28 THE A WK LANGUAGE CHAPTER 2

Regular Expressions

A regular expression is a notation for specifying and matching strings. Like
an arithmetic expression, a regular expression is a basic expression or one
created by applying operators to component expressions. To understand the
strings matched by a regular expression, we need to understand the strings
matched by its components.

Regular Expressions

1. The regular expression metacharacters are:

\"$.[]1()*+?

2. A basic regular expression is one of the following:
a nonmetacharacter, such as A. that matches itself.
an escape sequence that matches a special symbol: 't matches a tab (see Table 2-2).
a quoted metacharacter, such as '*·that matches the metacharacter literally.
". which matches the beginning of a string.
$, which matches the end of a string .
. • which matches any single character.
a character class: [ABC 1 matches any of the characters A. B, or C.
character classes may include abbreviations: [A-Za-z 1 matches any single letter.
a complemented character class: ["0-9 1 matches any character except a digit.

3. These operators combine regular expressions into larger ones:
alternation: A: B matches A or B.

concatenation: AB matches A immediately followed by B.
closure: A* matches zero or more A's.
positive closure: A+ matches one or more A's.
zero or one: A? matches the null string or A.

parentheses: (r) matches the same strings as r does.

The basic regular expressions are summarized in the table above. The char
acters

' " $ • [1 l () * + ?

are called metacharacters because they have special meanings. A regular
expression consisting of a single nonmetacharacter matches itself. Thus, a sin
gle letter or digit is a basic regular expression that matches itself. To preserve
the literal meaning of a metacharacter in a regular expression, precede it by a
backslash. Thus, the regular expression '$ matches the character $. If a char
acter is preceded by a single '· we'll say that character is quoted.

In a regular expression, an unquoted caret " matches the beginning of a
string, an unquoted dollar-sign $ matches the end of a string, and an unquoted
period • matches any single character. Thus,

SECTION 2.1

"C
C$
"C$
".$
...... $

\.$

matches a C at the beginning of a string
matches a C at the end of a string

PATTERNS 29

matches the string consisting of the single character c
matches any string containing exactly one character
matches any string containing exactly three characters
matches any three consecutive characters
matches a period at the end of a string

A regular expression consisting of a group of characters enclosed in brackets
is called a character class; it matches any one of the enclosed characters. For
example, [AEIOU] matches any of the characters A. E, I, 0, or u.

Ranges of characters can be abbreviated in a character class by using a
hyphen. The character immediately to the left of the hyphen defines the begin
ning of the range; the character immediately to the right defines the end. Thus,
[0-9] matches any digit, and [a-zA-Z] [0-9] matches a letter followed by a
digit. Without both a left and right operand, a hyphen in a character class
denotes itself, so the character classes [+-] and [-+] match either a + or a -.
The character class [A-Za-z-] + matches words that include hyphens.

A complemented character class is one in which the first character after the
[is a ". Such a class matches any character not in the group following the
caret. Thus, ["0-9] matches any character except a digit; ["a-zA-Z]
matches any character except an upper or lower-case letter.

" [ABC] matches an A, B or c at the beginning of a string
" ["ABC] matches any character at the beginning of a string. except A, B or C
["ABC] matches any character other than an A, B Or C
" ["a-z] $ matches any single-character string. except a lower-case letter

Inside a character class, all characters have their literal meaning, except for
the quoting character \, " at the beginning, and - between two characters.
Thus, [•] matches a period and " [""] matches any character except a caret
at the beginning of a string.

Parentheses are used in regular expressions to specify how components are
grouped. There are two binary regular expression operators: alternation and
concatenation. The alternation operator I is used to specify alternatives: if r 1

and r 2 are regular expressions, then r 1 I r 2 matches any string matched by r 1
or by r 2•

There is no explicit concatenation operator. If r 1 and r 2 are regular expres
sions, then (r 1) (r2) (with no blank between (r 1) and (r2)) matches any
string of the form xy where r 1 matches x and r 2 matches y. The parentheses
around r 1 or r 2 can be omitted, if the contained regular expression does not
contain the alternation operator. The regular expression

(Asian:European:North American) (male:female) (black:blue)bird

matches twelve strings ranging from

30 THE A WK LANGUAGE CHAPTER 2

Asian male blackbird

to

North American female bluebird

The symbols +, +, and ? are unary operators used to specify repetitions in
regular expressions. If r is a regular expression, then (r) * matches any string
consisting of zero or more consecutive substrings matched by r, (r) + matches
any string consisting of one or more consecutive substrings matched by r, and
(r)? matches the null string or any string matched by r. If r is a basic regular
expression, then the parentheses can be omitted.

B+
AB+C
AB+C
ABB+C
AB?C
[A-Z]+
(AB)+C

matches the null string orB or BB, and so on
matches AC or ABC or ABBC, and so on
matches ABC or ABBC or ABBBC, and so on
also matches ABC or ABBC or ABBBC, and so on
matches AC or ABC
matches any string of one or more upper-case letters
matches ABC, ABABC, ABABABC, and so on

In regular expressions, the alternation operator I has the lowest precedence,
then concatenation, and finally the repetition operators +, +, and ? . As in arith
metic expressions, operators of higher precedence are done before lower ones.
These conventions often allow parentheses to be omitted: ab I cd is the same as
(ab) I (cd), and "'ablcd+e$ is the same as ("'ab) I (c(d+)e$).

To finish our discussion of regular expressions, here are some examples of
useful string-matching' patterns containing regular expressions with unary and
binary operators, along with a description of the kinds of input lines they match.
Recall that a string-matching pattern lrl matches the current input line if the
line contains at least one substring matched by r.

/"(0-9]+$/
matches any input line that consists of only digits

/"(0-9][0-9](0-9]$/
exactly three digits

/"(\+1-)?[0-9]+\.?[0-9]+$/
a decimal number with an optional sign and optional fraction

/"(+-]?[0-9]+[.]?[0-9]+$/
also a decimal number with an optional sign and optional fraction

/"[+-]?{[0-9]+[.]?[0-9]+1[.][0-9]+)([eE][+-l?[0-9]+)?$/
a floating point number with optional sign and optional exponent

/"(A-Za-z][A-Za-z0-9]+$(
a letter followed by any letters or digits (e.g., awk variable name)

/"[A-Za-z]SI"[A-Za-z][0-9]$/
a letter or a letter followed by a digit (e.g., variable name in Basic)

/"[A-Za-z][0-9]?$/
also a letter or a letter followed by a digit

Since + and • are metacharacters, they have to be preceded by backslashes in
the third example to match literal occurrences. These backslashes are not

SECTION 2.1 PATTERNS 31

needed within character classes, so the fourth example shows an alternate way
to describe the same numbers.

Any regular expression enclosed in slashes can be used as the right-hand
operand of a matching operator: the program

$2 l- /"'[0-9]+$/

prints all lines in which the second field is not a string of digits.

Within regular expressions and strings, awk uses certain character sequences,
called escape sequences, to specify characters for which there may be no other
notation. For example, \n stands for a newline character, which cannot other
wise appear in a string or regular expression; \b stands for backspace; \ t
stands for tab; \007 represents the ASCII bell character; and \/ represents a
slash. Escape sequences have special meaning only within an awk program;
they are just characters in data. The complete list of escape sequences is shown
in Table 2-2.

TABLE 2-2. EsCAPE SEQUENCES

SEQUENCE

backspace
formfeed

\n newline Oine feed)
\r carriage return
\t tab

MEANING

\ddd octal value ddd, where ddd is 1 to 3 digits between 0 and 7
\c any other character c literally (e.g., \\ for backslash, \" for ")

Table 2-3 summarizes regular expressions and the strings they match. The
operators are listed in order of increasing precedence.

Compound Patterns

A compound pattern is an expression that combines other patterns, using
parentheses and the logical operators I I (OR), .&&. (AND), and 1 (NOT). A
compound pattern matches the current input line if the expression evaluates to
true. The following program uses the AND operator to select all lines in which
the fourth field is Asia and the third field exceeds 500:

$4 == "Asia" &.&. $3 > 500

The program

$4 == "Asia" I I $4 == "Europe"

uses the OR operator to select lines with either Asia or Europe as the fourth
field. Because the latter query is a test on string values, another way to write it

32 THE A WK LANGUAGE

EXPRESSION

c
\c

$

TABLE 2-3. REGULAR EXPRESSIONS

MATCHES

the nonmetacharacter c
escape sequence or literal character c

beginning of string
end of string
any character
any character in c 1c2 •••

any character not in c1c2 •••

CHAPTER 2

[c 1c2 •••]

["'CtC2•••]

[c 1-c2]

["'c 1-c 2]

r 1 :r2

(r 1) (r2)

any character in the range beginning with c 1 and ending with c2

any character not in the range c 1 to c 2

(r)•

(r)+
(r)?

(r)

any string matched by r 1 or r 2

any string xy where r 1 matches x and r 2 matches y;
parentheses not needed around arguments with no alternations

zero or more consecutive strings matched by r
one or more consecutive strings matched by r
zero or one string matched by r

parentheses not needed around basic regular expressions
any string matched by r

is to use a regular expression with the alternation operator I:

$4 - /"'(AsiaiEurope)S/

(Two regular expressions are equivalent if they match the same strings. Test
your understanding of the precedence rules for regular expressions: Are the two
regular expressions "Asia I Europe$ and "(Asia I Europe)$ equivalent?)

If there are no occurrences of Asia or Europe in other fields, this pattern
could also be written as

/Asia/ II /Europe/

or even

/Asia I Europe/

The II operator has the lowest precedence, then &&, and finally I. The &&
and I I operators evaluate their operands from left to right; evaluation stops as
soon as truth or falsehood is determined.

Range Patterns

A range pattern consists of two patterns separated by a comma, as in

pat 1, pat2

SECTION 2.1 PATIERNS 33

A range pattern matches each line between an occurrence of pat 1 and the next
occurrence of pat 2 inclusive; pat 2 may match the same line as pat 1, making the
range a single line. As an example, the pattern

/Canada/, /USA/

matches lines starting with the first line that contains Canada up through the
next line that contains USA

Matching begins whenever the first pattern of a range matches; if no
instance of the second pattern is subsequently found, then all lines to the end of
the input are matched:

prints

/Europe/, /Africa/

France 211
Japan 144
Germany 96
England 94

55
120
61
56

Europe
Asia
Europe
Europe

In the next example, FNR is the number of the line just read from the
current input file and FILENAME is the filename itself; both are built-in vari
ables. Thus, the program

FNR =:: 1, FNR == 5 { print FILENAME ": " $0 }

prints the first five lines of each input file with the filename prefixed. Alter
nately, this program could be written as

FNR <= 5 { print FILENAME ": " SO }

A range pattern cannot be part of any other pattern.

Summary of Patterns

Table 2-4 summarizes the kinds of patterns that can appear in pattern-action
statements.

PATIERN

BEGIN

END

expression
string-matching

compound

range

TABLE 2-4. PATIERNS

EXAMPLE

BEGIN
END

$3 < 100
/Asia/

$3 < 100 &.&.
$4 =:: "Asia"

NR==10, NR==20

MATCHES

before any input has been read
after all input has been read
lines in which third field is less than 100
lines that contain Asia
lines in which third field is less than 100 and

fourth field is Asia
tenth to twentieth lines of input inclusive

34 THE A WK LANGUAGE CHAPTER 2

2.2 Actions

In a pattern-action statement, the pattern determines when the action is to
be executed. Sometimes an action is very simple: a single print or assignment.
Other times, it may be a sequence of several statements separated by newlines
or semicolons. This section begins the description of actions by discussing
expressions and control-flow statements. The following sections present user
defined functions, and statements for input and output.

Actions

The statements in actions can include:
expressions, with constants, variables, assignments, function calls, etc.
print expression -list
printf (format, expression -list)
if (expression) statement
if (expression) statement else statement
while (expression) statement
for (expression ; expression ; expression) statement
for (variable in array) statement
do statement while (expression)
break
continue
next
exit
exit expression
{ statements }

Expressions

We begin with expressions, since expressions are the simplest statements, and
most other statements are made up of expressions of various kinds. An expres
sion is formed by combining primary expressions and other expressions with
operators. The primary expressions are the primitive building blocks: they
include constants, variables, array references, function invocations, and various
built-ins, like field names.

Our discussion of expressions starts with constants and variables. Then come
the operators that can be used to combine expressions. These operators fall into
five categories: arithmetic, comparison, logical, conditional, and assignment.
The built-in arithmetic and string functions come next, followed at the end of
the section by the description of arrays.

Constants. There are two types of constants, string and numeric. A string
constant is created by enclosing a sequence of characters in quotation marks, as

SECTION 2.2 ACTIONS 35

in "Asia" or 11hello, world" or "". String constants may contain the
escape sequences listed in Table 2-2.

A numeric constant can be an integer like 1127, a decimal number like
3. 14, or a number in scientific (exponential) notation like 0. 707E-1. Dif
ferent representations of the same number have the same numeric value: the
numbers 1e6, 1. OOE6, 10e5, 0 .1e7, and 1000000 are numerically equal.
All numbers are stored in floating point, the precision of which is machine
dependent.

Variables. Expressions can contain several kinds of variables: user-defined,
built-in, and fields. The names of user-defined variables are sequences of
letters, digits, and underscores that do not begin with a digit; all built-in vari
ables have upper-case names.

A variable has a value that is a string or a number or both. Since the type
of a variable is not declared, awk infers the type from context. When necessary,
awk will convert a string value into a numeric one, or vice versa. For example,
in

$4 == "Asia" { print $1, 1000 * $2 }

$2 is converted into a number if it is not one already, and $1 and $4 are con
verted into strings if they are not already.

An uninitialized variable has the string value "" (the null string) and the
numeric value 0.

Built-In Variables. Table 2-5 lists the built-in variables. Some of these we
have already met; others will be used in this and later sections. These variables
can be used in all expressions, and may be reset by the user. FILENAME is set
each time a new file is read. FNR, NF, and NR are set each time a new record is
read; additionally, NF is reset when $0 changes or when a new field is created.
RLENGTH and RSTART change as a result of invoking the match function.

Field Variables. The fields of the current input line are called $1, $2,
through $NF; $0 refers to the whole line. Fields share the properties of other
variables - they may be used in arithmetic or string operations, and may be
assigned to. Thus one can divide the second field in each line of countries
by 1000 to express areas in millions of square miles instead of thousands:

{ $2 = $2 I 1000; print }

One can assign a new string to a field:

BEGIN
$4 "North America"
$4 == "South America"

FS OFS = "\t"
$4 "NA" }
$4 "SA" }
print }

In this program, the BEGIN action sets FS, the variable that controls the input
field separator, and OFS, the output field separator, both to a tab. The print

36 THE A WK LANGUAGE CHAPTER 2

TABLE 2-5. BUILT-IN VARIABLES

VARIABLE MEANING DEFAULT

ARGC number of command-line arguments
ARGV array of command-line arguments

FILENAME name of current input file

FNR record number in current file

FS controls the input field separator " "
NF number of fields in current record

NR number of records read so far

OFMT output format for numbers "%.6g"
OFS output field separator II II

ORS output record separator 11\n"

RLENGTH length of string matched by match function

RS controls the input record separator "\n"

RSTART start of string matched by match function

SUBSEP subscript separator "\034"

statement in the fourth line prints the value of $0 after it has been modified by
previous assignments. This is important: when $0 is changed by assignment or
substitution, $1, $2, etc., and NF will be recomputed; likewise, when one of $1,
$2, etc., is changed, $0 is reconstructed using OFS to separate fields.

Fields can also be specified by expressions. For example, $ (NF-1) is the
next-to-last field of the current line. The parentheses are needed: $NF-1 is one
less than the numeric value of the last field.

A field variable referring to a nonexistent field, e.g., $ (NF+ 1) , has as its
initial value the null string. A new field can be created by assigning a value to
it. For example, the following program creates a fifth field containing the popu
lation density:

BEGIN { FS = OFS = 11 \t" }
{ SS = 1000 * $3 I $2; print }

Any intervening fields are created when necessary and given null values.
The number of fields can vary from line to line, but there is usually an

implementation limit of 100 fields per line.

Arithmetic Operators. Awk provides the usual +, -, *, I, %, and " arith
metic operators. The % operator computes remainders: x%y is the remainder
when x is divided by y; its behavior depends on the machine if x or y is nega
tive. The " operator is exponentiation: x"y is xY. All arithmetic is done in
floating point.

Comparison Operators. Comparison expressions are those containing either a
relational operator or a regular expression matching operator. The relational

SECTION 2.2 ACTIONS 37

Expressions

1. The primary expressions are:
numeric and string constants, variables, fields, function calls, array elements.

2. These operators combine expressions:
assignment operators = += -= *= I= %= "'=
conditional expression operator ? :
logical operators I I (OR), && (AND), I (NOT)
matching operators - and I -
relational operators < <= == I= > >=
concatenation (no explicit operator)
arithmetic operators + - * 1 % "'
unary +and -
increment and decrement operators ++and -- (prefix and postfix)
parentheses for grouping

operators are <, <=, == (equals), ! = (not equals), >=, and >. The regular
expression matching operators are - (is matched by) and 1- (is not matched
by). The value of a comparison expression is l if it is true and 0 otherwise.

Similarly, the value of a matching expression is 1 if true, 0 if false, so

$4 - /Asia/

is 1 if the fourth field of the current line contains Asia as a substring, or 0 if it
does not.

Logical Operators. The logical operators && (AND), II (OR), and I (NOT)
are used to create logical expressions by combining other expressions. A logical
expression has the value l if it is true and 0 if false. In the evaluation of a logi
cal operator, an operand with a nonzero or nonnull value is treated as true;
other values are treated as false. The operands of expressions separated by &&
or II are evaluated from left to right, and evaluation ceases as soon as the
value of the complete expression can be determined. This means that in

expr 1 &.&. expr 2

expr2 is not evaluated if expr 1 is false, while in

expr 3 I I expr 4

expr 4 is not evaluated if expr 3 is true.
Newlines may be inserted after the && and I I operators.

Conditional Expressions. A conditional expression has the form

expr 1 ? expr 2 : expr 3

First, expr 1 is evaluated. If it is true, that is, nonzero or nonnull, the value of

38 THE A WK LANGUAGE CHAPTER 2

the conditional expression is the value of expr 2; otherwise, it is the value of
expr3 • Only one of expr2 and expr3 is evaluated.

The following program uses a conditional expression to print the reciprocal
of $ 1, or a warning if $ 1 is zero:

{ print ($1 I= 0 ? 1/$1 : "$1 is zero, line " NR) }

Assignment Operators. There are seven assignment operators that can be
used in expressions called assignments. The simplest assignment is an expres
sion of the form

var = expr

where var is a variable or field name, and expr is any expression. For example,
to compute the total population and number of Asian countries, we could write

$4 == "Asia" { pop = pop + $3; n ::: n + 1 }
END { print "Total population of the", n,

"Asian countries is", pop, "million."

Applied to countries, the program produces

Total population of the 4 Asian countries is 2173 million.

The first action contains two assignments, one to accumulate population, and
the other to count countries. The variables are not explicitly initialized, yet
everything works properly because each variable is initialized by default to the
string value " 11 and the numeric value 0.

We also use default initialization to advantage in the following program,
which finds the country with the largest population:

$3 > maxpop { maxpop = $3; country = $1 }
END {print "country with largest population:",

country, maxpop
}

Note, however, that this program is correct only when at least one value of $3
is positive.

The other six assignment operators are +=, -=, *=, 1=, %=, and "=. Their
meanings are similar: v op= e has the same effect as v = v ope, except that v is
evaluated only once. The assignment

pop = pop + $3

can be written more concisely using the assignment operator +=:

pop += $3

This statement has the same effect as the longer version - the variable on the
left is incremented by the value of the expression on the right - but += is
shorter and runs faster. As another example,

SECTION 2.2 ACTIONS 39

{ $2 /; 1000; print }

divides the second field by 1 000, then prints the line.
An assignment is an expression; its value is the new value of the left side.

Thus assignments can be used inside any expression. In the multiple assignment

FS ; OFS ; "\t"

both the field separator and the output field separator are set to tab. Assign
ment expressions are also common within tests, such as:

if ((n; length($0)) > 0) ...

Increment and Decrement Operators. The assignment

n ; n + 1

is usually written ++n or n++ using the unary increment operator ++, which
adds 1 to a variable. The prefix form ++n increments n before delivering its
value; the postfix form n++ increments n after delivering its value. This makes
a difference when + + is used in an assignment. If n is initially 1, then the
assignment i = ++n.increments n and assigns the new value 2 to i, while the
assignment i = n++ increments n but assigns the old value 1 to i. To just
increment n, however, there's no difference between n++ and ++n. The prefix
and postfix decrement operator --, which subtracts 1 from a variable, works the
same way.

Built-In Arithmetic Functions. The built-in arithmetic functions are shown
in Table 2-6. These functions can be used as primary expressions in all expres
sions. In the table, x and y are arbitrary expressions.

TABLE 2-6. BUILT-IN ARITHMETIC FUNCTIONS

FUNCTION

atan2(y,x)
cos(x)
exp(x)
int(x)
log(x)
rand()
sin(x)
sqrt(x)
srand(x)

VALUE RETURNED

arctangent of yl x in the range --;r to 1r

cosine of x, with x in radians
exponential function of x, ex

integer part of x; truncated towards 0 when x > 0
natural (base e) logarithm of x
random number r, where 0 ~ r < 1
sine of x, with x in radians
square root of x
x is new seed for rand ()

Useful constants can be computed with these functions: atan2 (0,-1) gives
1r and exp (1) gives e, the base of the natural logarithms. To compute the
base-10 logarithm of x, use log (x) /log (10).

40 THE A WK lANGUAGE CHAPTER 2

The function rand () returns a pseudo-random floating point number
greater than or equal to 0 and less than 1. Calling srand(x) sets the starting
point of the generator from x. Calling srand () sets the starting point from
the time of day. If srand is not called, rand starts with the same value each
time the program is run.

The assignment

randint = int(n *rand()) + 1

sets randint to a random integer between 1 and n inclusive. Here we are
using the int function to discard the fractional part. The assignment

x = int(x + 0.5)

rounds the value of x to the nearest integer when xis positive.

String Operators. There is only one string operation, concatenation. It has
no explicit operator: string expressions are created by writing constants, vari
ables, fields, array elements, function values, and other expressions next to one
another. The program

{ print NR ":" $0 }

prints each line preceded by its line number and a colon, with no blanks. The
number NR is converted to its string value (and so is $0 if necessary); then the
three strings are concatenated and the result is printed.

Strings as Regular Expressions. So far, in all of our examples of matching
expressions, the right-hand operand of - and 1- has been a regular expression
enclosed in slashes. But, in fact, any expression can be used as the right
operand of these operators. Awk evaluates the expression, converts the value to
a string if necessary, and interprets the string as a regular expression. For
example, the program

BEGIN { digits = "A[0-9]+$" }
$2 - digits

will print all lines in which the second field is a string of digits.
Since expressions can be concatenated, a regular expression can be built up

from components. The following program echoes input lines that are valid float
ing point numbers:

BEGIN {

}

sign = "[+-]?"
decimal= "[0-9]+[.]?[0-9]*"
fraction= "[.][0-9]+"
exponent= "([eEl" sign "[0-9]+)?"
number= nAn sign"(" decimal "I" fraction ")" exponent "$"

$0 .. number

In a matching expression, a quoted string like "" [0-9] +$" can normally be

SECTION 2.2 ACTIONS 41

used interchangeably with a regular expression enclosed in slashes, such as
/"' [0-9] +$/. There is one exception, however. If the string in quotes is to
match a literal occurrence of a regular expression metacharacter, one extra
backslash is needed to protect the protecting backslash itself. That is,

$0 - /(,+l-)[0-9]+/

and

$0 - "(,\+l-)[0-9]+"

are equivalent.
This behavior may seem arcane, but it arises because one level of protecting

backslashes is removed when a quoted string is parsed by awk. If a backslash is
needed in front of a metacharacter to turn off its special meaning in a regular
expression, then that backslash needs a preceding backslash to protect it in a
string. If the right operand of a matching operator is a variable or field vari
able, as in

X - $1

then the additional level of backslashes is not needed in the first field because
backslashes have no special meaning in data.

As an aside, it's easy to test your understanding of regular expressions
interactively: the program

$1 - $2

lets you type in a string and a regular expression; it echoes the line back if the
string matches the regular expression.

Built-In String Functions. Awk provides the built-in string functions shown
in Table 2-7. In this table, r represents a regular expression (either as a string
or enclosed in slashes), s and t are string expressions, and n and p are integers.

The function index (s, t) returns the leftmost position where the string t
begins in s, or zero if t does not occur in s. The first character in a string is at
position 1:

index("banana 11
,

11 an 11
)

returns 2.

The function match(s ,r) finds the leftmost longest substring in the strings
that is matched by the regular expression r. It returns the index where the sub
string begins or 0 if there is no matching substring. It also sets the built-in
variables RSTART to this index and RLENGTH to the length of the matched sub
string.

The function split (s, a ,fs) splits the string s into the array a according
to the separator fs and returns the number of elements. It is described after
arrays, at the end of this section.

42 THE A WK LANGUAGE CHAPTER 2

TABLE 2-7. BUILT-IN STRING FUNCTIONS

FUNCTION

gsub(r,s)

gsub(r ,s ,t)

index(s ,t)

length(s)
match(s ,r)

split(s ,a)
split(s ,a ,fs)

sprint£ <Jmt , expr -list)
sub(r ,s) ·

sub(r ,s ,t)

substr (s ,p)
substr (s ,p ,n)

DESCRIPTION

substitute s for r globally in $0,
return number of substitutions made

substitutes for r globally in string t,
return number of substitutions made

return first position of string t in s, or 0 if t is not present
return number of characters in s
test whether s contains a substring matched by r,

return index or 0; sets RSTART and RLENGTH

split s into array a on FS, return number of fields
splits into array a on field separator fs,

return number of fields
return expr -list formatted according to format string fmt
substitutes for the leftmost longest substring of $0

matched by r, return number of substitutions made
substitute s for the leftmost longest substring oft

matched by r, return number of substitutions made
return suffix of s starting at position p
return substring of s of length n starting at position p

The string function sprintf(jormat, expr 1 , expr2 , ••• , exprn) returns
(without printing) a string containing expr., expr2, ••• , exprn formatted accord
ing to the print£ specifications in the string value of the expression format.
Thus, the statement

x = sprintf("%10s %6d", $1, $2)

assigns to x the string produced by formatting the values of $1 and $2 as a
ten-character string and a decimal number in a field of width at least six. Sec
tion 2.4 contains a complete description of the format-conversion characters.

The functions sub and gsub are patterned after the substitute command in
the Unix text editor ed. The function sub (r, s , t) first finds the leftmost long
est substring matched by the regular expression r in the target string t; it then
replaces the substring by the substitution string s. As in ed, uleftmost longest"
means that the leftmost match is found first, then extended as far as possible.

In the target string banana, for example, anan is the leftmost longest sub
string matched by the regular expression (an)+. By contrast, the leftmost
longest match of (an) * is the null string before b.

The sub function returns the number of substitutions made. The function
sub(r,s) is a synonym for sub(r,s,$0}.

The function gsub(r ,s ,t) is similar, except that it successively replaces the

SECTION 2.2 ACTIONS 43

leftmost longest nonoverlapping substrings matched by r with s in t; it returns
the number of substitutions made. (The "g" is for "global," meaning every
where.) For example, the program

{ qsub(/USA/, "United States"); print }

will transcribe its input, replacing all occurrences of "USA" by "United
States". (In such examples, when $0 changes, the fields and NF change too.)
And

qsub(/ana/, "anda", "banana")

will replace banana by bandana; matches are nonoverlapping.
In a substitution performed by either sub(r,s,t) or gsub(r,s,t), any

occurrence of the character &. in s will be replaced by the substring matched by
r. Thus

qsub(/a/, "aba", "banana")

replaces banana by babanabanaba; so does

qsub(/a/, "&b&", "banana")

The special meaning of&. in the substitution string can be turned off by preced
ing it with a backslash, as in \&..

The function substr(s ,p) returns the suffix of s that begins at position p.
If substr (s ,p , n) is used, only the first n characters of the suffix are
returned; if the suffix is shorter than n, then the entire suffix is returned. For
example, we could abbreviate the country names in countries to their first
three characters by the program

{ $1 = substr($1, 1, 3); print $0 }

to produce

uss 8649 275 Asia
Can 3852 25 North America
Chi 3705 1032 Asia
USA 3615 237 North America
Bra 3286 134 South America
Ind 1267 746 Asia
Mex 762 78 North America
Fra 211 55 Europe
Jap 144 120 Asia
Ger 96 61 Europe
Enq 94 56 Europe

Setting $1 forces awk to recompute $0 and thus the fields are now separated by
a blank (the default value of OFS), no longer by a tab.

Strings are concatenated merely by writing them one after another in an
expression. For example, on the countries file,

44 THE A WK LANGUAGE CHAPTER 2

{ s = s substr ($1 , 1 , 3) 11 11
}

END { print s }

prints

USS Can Chi USA Bra Ind Mex Fra Jap Ger Eng

by building s up a piece at a time starting with an initially empty string. (If
you are worried about the extra blank on the end, use

print substr(s, 1, length(s}-1)

instead of print s in the END action.)

Number or String? The value of an expression may be automatically con
verted from a number to a string or vice versa, depending on what operation is
applied to it. In an arithmetic expression like

pop + $3

the operands pop and $3 must be numeric, so their values will be forced or
coerced to numbers if they are not already. Similarly, in the assignment expres
sion

pop += $3

pop and $3 must be numbers. In a string expression like

$1 $2

the operands $1 and $2 must be strings to be concatenated, so they will be
coerced to strings if necessary.

In contexts where the same operator applies to both numbers and strings,
there are special rules. In the assignment v = e, both the assignment and the
variable v acquire the type of the expression e. In a comparison expression like

X == y

if both operands have a numeric type, the comparison is numeric; otherwise, any
numeric operand is coerced to a string anq the comparison is made on the string
values.

Let us examine what this rule means for a comparison like

$1 :;::;: $2

that involves fields. Here, the type of the comparison depends on whether the
fields contain numbers or strings, and this can only be determined when the pro
gram runs; the type of the comparison may differ from input line to input line.
When awk creates a field at run time, it automatically sets its type to string; in
addition, if the field contains a machine-representable number, it also gives the
field a numeric type.

For example, the comparison $1 == $2 will be numeric and succeed if $1
and $2 have any of the values

SECTION 2.2 ACTIONS 45

1. 0 +1 1e0 0. 1e+ 1 10E-1 001

because all these values are different representations of the number 1. How
ever, this same expression will be a string comparison and hence fail on each of
these pairs:

0
0.0
0
1e500

(null)
(null)
Oa
1.0e500

In the first three pairs, the second field is not a number. The last pair will be
compared as strings on machines where the values are too large to be
represented as numbers.

The print statement

print $1

prints the string value of the first field; thus, the output is identical to the input.
Uninitialized variables are created with the numeric value 0 and the string

value "". Nonexistent fields and fields that are explicitly null have only the
string value ""; they are not numeric, but when coerced to numbers they
acquire the numeric value 0. As we will see at the end of this section, array
subscripts are strings.

There are two idioms for coercing an expression of one 'type to the other:

number ""
string + 0

concatenate a null string to number to coerce it to a string
add zero to string to coerce it to a number

Thus, to force a string comparison between two fields, coerce one field to string:

$1 lilt ;::;:: $2

To force a numeric comparison, coerce both fields to numeric:

$1 + 0 ;::;:: $2 + 0

This works regardless of what the fields contain.
The numeric value of a string is the value of the longest prefix of the string

that looks numeric. Thus

BEGIN { print "1E2"+0, "12E"+0, "E12"+0, "1X2Y3"+0 }

yields

100 12 0 1

The string value of a number is computed by formatting the number with
the output format conversion OFMT. OFMT also controls the conversion of
numeric values to strings for concatenation, comparison, and creation of array
subscripts. The default value of OFMT is "%. 6g". Thus

BEGIN { print 1E2 "", 12E-2 "", E12 "", 1.23456789 "" }

gives

46 THE A WK LANGUAGE CHAPTER 2

100 0.12 1.23457

The default value of OFMT can be changed by assigning it a new value. If
OFMT were changed to ""· 2£", for example, numbers would be printed, and
coerced numbers would be compared, with two digits after the decimal point.

TABLE 2-8. EXPRESSION OPERA TORS

OPERATION OPERATORS EXAMPLE MEANING OF EXAMPLE

assignment = += -= *= X *= 2 X = X * 2
I= %= ,.. =

conditional ?: x?y:z if x is true then y else z
logical OR II X II y I if x or y is true, II II

0 otherwise
logical AND && X && y l if x and y are true,

0 otherwise
array membership in i in a l if a [i] exists, 0 otherwise
matching - 1- $1 - /x/ l if the first field contains an x,

0 otherwise
relational < <= == I= X == y l if x is equal to y,

>= ,. 0 otherwise
concatenation "a" "be" "abc"; there is no explicit

concatenation operator
add, subtract + - X + y sum of x andy
multiply, divide, mod * I % x%y remainder of x divided by y
unary plus and minus + - -x negated value of x
logical NOT I l$1 1 if $ 1 is zero or null,

0 otherwise
exponentiation

,.. X ,.. y xY
increment, decrement ++ -- ++X, X++ add 1 to x
field $ Si+1 value of i·th field, plus 1
grouping () ($i)++ add 1 to value of i·th field

Summary of Operators. The operators that can appear in expressions are
summarized in Table 2-8. Expressions can be created by applying these opera
tors to constants, variables, field names, array elements, functions, and other
expressions.

The operators are listed in order of increasing precedence. Operators of
higher precedence are evaluated before lower ones; this means, for example, that
* is evaluated before + in an expression. All operators are left associative
except the assignment operators, the conditional operator, and exponentiation,
which are right associative. Left associativity means that operators of the same
precedence are evaluated left to right; thus 3-2- 1 is (3-2) -1, not 3- (2 -1) .

SECTION 2.2 ACTIONS 47

Since there is no explicit operator for concatenation, it is wise to
parenthesize expressions involving other operators in concatenations. Consider
the program

$1 < 0 { print 11 abs ($1) = 11 -$1 }

The expression following print seems to use concatenation, but is actually a
subtraction. The programs

$1 < 0 { print 11 abs ($1) = 11
(-$1) }

and

$1 < 0 { print 11 abs($1)

both do what was intended.

Control-Flow Statements

_II

- ' -$1 }

Awk provides braces for grouping statements, an if-else statement for
decision-making, and while, for, and do statements for looping. All of these
statements were adopted from C.

A single statement can always be replaced by a list of statements enclosed in
braces. The statements in the list are separated by newlines or semicolons.
Newlines may be put after any left brace and before any right brace.

The if-else statement has the form

if (expression)
statement 1

else
statement 2

The else statement 2 is optional. Newlines are optional after the right
parenthesis, after statement 1, and after the keyword else. If else appears on
the same line as statement 1, then a semicolon must terminate statement 1 if it is
a single statement.

In an if-else statement, the test expression is evaluated first. If it is true,
that is, either nonzero or nonnull, statement 1 is executed. If expression is false,
that is, either zero or null, and else statement 2 is present, then statement 2 is
executed.

To eliminate any ambiguity, we adopt the rule that each else is associated
with the closest previous unassociated if. For I!Xample, the else in the state
ment

if (e1) if (e2) s=1; else s=2

is associated with the second if. (The semicolon after s= 1 is required, since
the else appears on the same line.)

The while statement repeatedly executes a statement while a condition is
true:

48 THE A WK LANGUAGE

{ statements }
statement grouping

if (expression) statement

Control-Flow Statements

if expression is true, execute statement
if (expression) statement 1 else statement 2

if expression is true, execute statement 1 otherwise execute statement 2

while (expression) statement
if expression is true, execute statement, then repeat

for (expression,; expression 2 ; expression 3) statement

CHAPTER 2

equivalent to expression 1 ; while (expression 2) { statement; expression 3 }

for (variable in array) statement
execute statement with variable set to each subscript in array in turn

do statement while (expression)
execute statement; if expression is true, repeat

break
immediately leave innermost enclosing while, for or do

continue
start next iteration of innermost enclosing while, for or do

next
start next iterc1tion of main input loop

exit
exit expression

go immediately to the END action; if within the END action, exit program entirely.
Return expression as program status.

while (expression)
statement

Newlines are optional after the right parenthesis. In this loop, expression is
evaluated; if it is true, statement is executed and expression is tested again.
The cycle repeats as long as expression is true. For example, this program
prints all input fields, one per line:

i = 1
while (i <::: NF)

print $i
i++

The loop stops when i reaches NF+ 1, and that is its value after the loop exits.

The for statement is a more general form of while:

SECTION 2.2

for (expression 1 ; expression 2 ; expression 3)

statement

ACTIONS 49

Newlines are optional after the right parenthesis. The for statement has the
same effect as

so

expression 1
while (expression 2)

statement

}
expression 3

for (i = 1; i <= NF; i++)
print $i

does the same loop over the fields as the while example above. In the for
statement, all three expressions are optional. If expression 2 is missing, the con
dition is taken to be always true, so for (; ;) is an infinite loop.

An alternate version of the for statement that loops over array subscripts is
described in the section on arrays.

The do statement has the form

do
statement

while (expression)

Newlines are optional after the keyword do and after statement. If while
appears on the same line as statement, then statement must be terminated by a
semicolon if it is a single statement. The do loop executes statement once, then
repeats statement as long as expression is true. It differs from the while and
for in a critical way: its test for completion is at the bottom instead of the top,
so it always goes through the loop at least once.

There are two statements for modifying how loops cycle: break and
continue. The break statement causes an exit from the immediately enclos
ing while or for or do. The continue statement causes the next iteration
to begin; it causes execution to go to the test expression in the while and do,
and to expression 3 in the for statement.

The next and exit statements control the outer loop that reads the input
lines in an awk program. The next statement causes awk to fetch the next
input line and begin matching patterns starting from the first pattern-action
statement. In an END action, the exit statement causes the program to ter
minate. In any other action, it causes the program to behave as if the end of
the input had occurred; no more input is read, and the END actions, if any, are
executed.

If an exit statement contains an expression

50 THE AWK LANGUAGE CHAPTER 2

exit expr

it causes awk to return the value of expr as its exit status unless overridden by a
subsequent error or exit. If there is no expr, the exit status is zero. In some
operating systems, including Unix, the exit status may be tested by the program
that invoked awk.

Empty Statement

A semicolon by itself denotes the empty statement. In the following pro
gram, the body of the for loop is an empty statement.

BEGIN FS = "\t" }
for (i = 1; i <= NF && $i I=

;
if (i <= NF)

print

"". t

The program prints all lines that contain an empty field.

Arrays

i++)

Awk provides one-dimensional arrays for storing strings and numbers.
Arrays and array elements need not be declared, nor is there any need to specify
how many elements an array has. Like variables, array elements spring into
existence by being mentioned; at birth, they have the numeric value 0 and the
string value " ".

As a simple example, the statement

x[NR] = $0

assigns the current input line to element NR of the array x. In fact, it is easy
(though perhaps slow) to read the entire input into an array, then process it in
any convenient order. For example, this variant of the program from Section
I. 7 prints its input in reverse line order:

{ x[NR] = $0 }
END { for (i = NR; i > 0; i--) print x[i] }

The first action merely records each input line in the array x, using the line
number as a subscript; the real work is done in the END statement.

The characteristic that sets awk arrays apart from those in most other
languages is that subscripts are strings. This gives awk a capability like the
associative memory of SNOBOL4 tables, and for this reason, arrays in awk are
called associative arrays.

The following program accumulates the populations of Asia and Europe in
the array pop. The END action prints the total populations of these two con
tinents.

SECTION 2.2

/Asia/
/Europe/
END

pop["Asia"] += $3 }
pop["Europe"] += $3
print "Asian population is",

pop["Asia"], "million."
print "European population is",

pop["Europe" 1, "million."

On countries, this program generates

Asian population is 2173 million.
European population is 172 million.

ACTIONS 51

Note that the subscripts are the string constants "Asia" and "Europe". If
we had written pop[Asia] instead of pop["Asia"], the expression would
have used the value of the variable Asia as the subscript, and since the variable
is uninitialized, the values would have been accumulated in pop [" "] .

This example doesn't really need an associative array since there are only
two elements, both named explicitly. Suppose instead that our task is to deter
mine the total population for each continent. Associative arrays are ideally
suited for this kind of aggregation. Any expression can be used as a subscript in
an array reference, so

pop($4] += $3

uses the string in the fourth field of the current input line to index the array
pop and in that entry accumulates the value of the third field:

BEGIN FS = "'t" }
pop[S4] += $3 }

END for (name in pop)
print name, pop[name]

The subscripts of the array pop are the continent names; the values are the
accumulated populations. This code works regardless of the number of con
tinents; the output from the countries file is

North America 340
South America 134
Asia 2173
Europe 172

The last program used a form of the for statement that loops over all sub
scripts of an array:

for (variable in array)
statement

This loop executes statement with variable set in turn to each different subscript
in the array. The order in which the subscripts are considered is implementa
tion dependent. Results are unpredictable if new elements are added to the
array by statement.

52 THE A WK LANGUAGE CHAPTER 2

You can determine whether a particular subscript occurs in an array with
the expression

subscript in A

This expression has the value 1 if A [subscript] already exists, and 0 otherwise.
Thus, to test whether Africa is a subscript of the array pop you can say

if ("Africa" in pop) ...

This condition performs the test without the side effect of creating
pop["Africa"], which would happen if you used

if (pop["Africa"] I="") ...

Note that neither is a test of whether the array pop contains an element with
value "Africa".

The delete Statement. An array element may be deleted with

delete array[subscript]

For example, this loop removes all the elements from the array pop:

for (i in pop)
delete pop[i]

The split Function. The function split (str, arr ,Js) splits the string
value of str into fields and stores them in the array arr. The number of fields
produced is returned as the value of split. The string value of the third argu
ment, fs, determines the field separator. If there is no third argument, FS is
used. In either case, the rules are as for input field splitting, which is discussed
in Section 2.5. The function

split("7/4/76", arr, "/")

splits the string 7/4/76 into three fields using I as the separator; it stores 7 in
arr [" 1 "] , 4 in arr ["2"] , and 7 6 in arr [11 3 11

] •

Strings are versatile array subscripts, but the behavior of numeric subscripts
as strings may sometimes appear counterintuitive. Since the string values of 1
and 11 1 " are the same, arr [1] is the same as arr [11 1 11

] • But notice that 0 1
is not the same string as 1 and the string 1 0 comes before the string 2.

Multidimensional Arrays. Awk does not support multidimensional arrays
directly but it provides a simulation using one-dimensional arrays. Although
you can write multidimensional subscripts like i, j or s, p, q, r, awk concaten
ates the components of the subscripts (with a separator between them) to syn
thesize a single subscript out of the multiple subscripts you write. For example,

for (i = 1; i <= 10; i++)
for (j = 1; j <= 10; j++)

arr[i, j] = 0

SECTION 2.3 USER-DEFINED FUNCTIONS 53

creates an array of 100 elements whose subscripts appear to have the form 1 , 1,
1, 2, and so on. Internally, however, these subscripts are stored as strings of the
form 1 SUBSEP 1, 1 SUBSEP 2, and so on. The built-in variable SUBSEP
contains the value of the subscript-component separator; its default value is not
a comma but .. ,034 11

, a value that is unlikely to appear in normal text.
The test for array membership with multidimensional subscripts uses a

parenthesized list of subscripts, such as

if ((i,j) in arr) ...

To loop over such an array, however, you would write

for (kin arr) ...

and use split (k, x, SUBSEP) if access to the individual subscript components
is needed.

Array elements cannot themselves be arrays.

2.3 User-Defined Functions

In addition to built-in functions, an awk program can contain user-defined
functions. Such a function is defined by a statement. of the form

function name (parameter-list)
statements

A function definition can occur anywhere a pattern-action statement can. Thus,
the general form of an awk program is a sequence of pattern-action statements
and function definitions separated by newlines or semicolons.

In a function definition, newlines are optional after the left brace and before
the right brace of the function body. The parameter list is a sequence of vari
able names separated by commas; within the body of the function these vari
ables refer to the arguments with which the function was called.

The body of a function definition may contain a return statement that
returns control and perhaps a value to the caller. It has the form

return expression

The expression is optional, and so is the return statement itself, but the
returned value is undefined if none is provided or if the last statement executed
is not a return.

For example, this function computes the maximum of its arguments:

function max(m, n)
return m > n ? m : n

The variables m and n belong to the function max; they are unrelated to any

54 THE A WK LANGUAGE CHAPTER 2

other variables of the same names elsewhere in the program.
A user-defined function can be used in any expression in any pattern-action

statement or the body of any function definition. Each use is a call of the func
tion. If a user-defined function is called in the body of its own definition, that
function is said to be recursive.

For example, the max function might be called like this:

{print max(S1,max(S2,S3))

function max(m, n)
return m > n ? m : n

#print maximum of $1, $2, $3

There cannot be any blanks between the function name and the left parenthesis
of the argument list when the function is called.

When a function is called with an argument like $1, which is just an ordi
nary variable, the function is given a copy of the value of the variable, so the
function manipulates the copy, not the variable itself. This means that the func
tion cannot affect the value of the variable outside the function. (The jargon is
that such variables, called "scalars," are passed "by value.") Arrays are not
copied, however, so it is possible for the function to alter array elements or
create new ones. (This is called passing "by reference.") The name of a func
tion may not be used as a parameter.

To repeat, within a function definition, the parameters are local variables -
they last only as long as the function is executing, and they are unrelated to
variables of the same name elsewhere in the program. But all other variables
are global; if a variable is not named in the parameter list, it is visible and
accessible throughout the program.

This means that the way to provide local variables for the private use of a
function is to include them at the end of the parameter list in the function
definition. Any variable in the parameter list for which no actual parameter is
supplied in a call is a local variable, with null initial value. This is not a very
elegant language design but it at least provides the necessary facility. We put
several blanks between the arguments and the local variables so they can be dis
tinguished.

2.4 Output

The print and print£ statements generate output. The print statement
is used for simple output; print£ is used when careful formatting is required.
Output from print and print£ can be directed into files and pipes as well as
to the terminal. These statements can be used in any mixture; the output comes
out in the order in which it is generated.

SECTION 2.4

Output Statements

print
print $0 on standard output

print expression, expression, ...
print expression's, separated by OFS, terminated by ORS

print expression, expression, ... >filename
print on file filename instead of standard output

print expression, expression, ... >>filename
append to file filename instead of overwriting previous contents

print expression, expression, ... I command
print to standard input of command

print£ <format, expression, expression, ...)
print£ <format, expression, expression, ...) >filename
print£ <format , expression, expression, ...) >>filename
print£ <format, expression, expression, ...) I command

OUTPUT 55

print£ statements are like print but the first argument specifies output format
close <filename). close (command)

break connection between print and filename or command
system (command)

execute command; value is status return of command

The argument list of a print£ statement does not need to be enclosed· in parentheses.
But if an expression in the argument list of a print or print£ statement contains a
relational operator. either the expression or the argument list must be enclosed in
parentheses. Pipes and system may not be available on non-Unix systems.

The print Statement

The print statement has two forms:

print expr 1 , expr 2 , ... , expr,
print(expr 1 , expr 2 , ••• , expr,)

Both forms print the string value of each expression separated by the output
field separator followed by the output record separator. The statement

print

is an abbreviation for

print $0

To print a blank line. that is, a line with only a newline, use

print 1111

The second form of the print statement encloses the argument list in
parentheses, as in

56 THE A WK LANGUAGE CHAPTER 2

print($1 ":", $2)

Both forms of the print statement generate the same output but, as we will
see, parentheses are necessary for arguments containing relational operators.

Output Separators

The output field separator and output record separator are stored in the
built-in variables OFS and ORS. Initially, OFS is set to a single blank and ORS
to a single newline, but these values can be changed at any time. For example,
the following program prints the first and second fields of each line with a colon
between the fields and two newlines after the second field:

BEGIN

By contrast,

{ OFS = ":"; ORS = "\n\n" }
{ print $1, $2 }

{ print $1 $2 }

prints the first and second fields with no intervening output field separator,
because $1 $2 is a string consisting of the concatenation of the two fields.

The print£ Statement

The print£ statement is used to generate formatted output. It is similar to
that in C except that the * format specifier is not supported. Like print, it
has both an unparenthesized and parenthesized form:

printf format, expr 1 , expr2 , ... , exprn
printf <format, expr 1 , expr 2 , ••• , exprn)

The format argument is always required; it is an expression whose string value
contains both literal text to be printed and specifications of how the expressions
in the argument list are to be formatted, as in Table 2-9. Each specification
begins with a %, ends with a character that determines the conversion, and may
include three modifiers:

left-justify expression in its field
width pad field to this width as needed; leading 0 pads with zeros
• prec maximum string width. or digits to right of decimal point

Table 2-10 contains some examples of specifications, data, and the
corresponding output. Output produced by print£ does not contain any new
lines unless you put them in explicitly.

Output Into Files

The redirection operators > and >> are used to put output into files instead
of the standard output. The following program will put the first and third fields
of all input lines into two files: bigpop if the third field is greater than 100,

SECTION 2.4

TABLE 2-9. PRINTF FORMAT-CONTROL CHARACTERS

CHARACTER PRINT EXPRESSION As

c ASCII character
d decimal integer
e [-]d.ddddddE[+-]dd
f [-]ddd.dddddd
g e or f conversion, whichever is shorter, with

nonsignificant zeros suppressed
o unsigned octal number
s string
x unsigned hexadecimal number
% print a %; no argument is consumed

TABLE 2-10. EXAMPLES OF PRINTF SPECIFICATIONS

fmt $1 printf(fmt,

%c 97 a
%d 97.5 97
%5d 97.5 97
%e 97.5 9.750000e+01
%£ 97.5 97.500000
%7.2£ 97.5 97.50
%q 97.5 97.5
%.6g 97.5 97.5
%o 97 141
%06o 97 000141
%x 97 61
l%sl January I January:
l%10sl January January I
l%-10sl January I January
l%.3sl January I Jan:
l%10.3sl January Jan I
l%-10.3sl January I Jan

"" January "
and smallpop otherwise:

$3 > 100 { print S1, $3 >"bigpop" }
$3 <= 100 { print $1, $3 >"smallpop"

$1)

OUTPUT 57

Notice that the filenames have to be quoted; without quotes, bigpop and

58 THE A WK LANGUAGE CHAPTER 2

smallpop are merely uninitialized variables. Filenames can be variables or
expressions as well:

{ print($1, $3) > ($3 > 100 ? "bigpop" : "smallpop") }

does the same job, and the program

{ print > $1 }

puts every input line into a file named by the first field.
In print and print£ statements, if an expression in the argument list con

tains a relational operator, then either that expression or the argument list needs
to be parenthesized. This rule eliminates any potential ambiguity arising from
the redirection operator >. In

{ print $1, $2 > $3 }

> is the redirection operator, and hence not part of the second expression, so the
values of the first two fields are written to the file named in the third field. If
you want the second expression to include the >operator, use parentheses:

{ print $1, ($2 > $3) }

It is also important to note that a redirection operator opens a file only once;
each successive print or print£ statement adds more data to the open file.
When the redirection operator > is used, the file is initially cleared before any
output is written to it. If >> is used instead of >, the file is not initially cleared;
output is appended after the original contents.

Output Into Pipes

It is also possible to direct output into a pipe instead of a file on systems that
support pipes. The statement

print I command

causes the output of print to be piped into the command.
Suppose we want to create a list of continent-population pairs, sorted in

reverse numeric order by population. The program below accumulates in an
array pop the population values in the third field for each of the distinct con
tinent names in the fourth field. The END action prints each continent name
and its population, and pipes this output into a suitable sort command.

print continents and populations, sorted by population

BEGIN { FS = "\t" }
{ pop($4] += $3 }

END { for (c in pop)
printf("%15s\t%6d\n", c, pop[c])

This yields

"sort -t'\t' +1rn"

SECTION 2.5 INPUT 59

Asia 2173
North America 340

Europe 172
South America 134

Another use for a pipe is writing onto the standard error file on Unix sys
tems; output written there appears on the user's terminal instead of the standard
output. There are several idioms for writing on the standard error file:

print message I "cat 1>&2" # redirect cat to stderr

system("echo '" message "' 1>&2") # redirect echo to stderr

print message > "/dev/tty" # write directly on terminal

Although most of our examples show literal strings enclosed in quotes, com
mand lines and filenames can be specified by any expression. In print state
ments involving redirection of output, the files or pipes are identified by their
names; that is, the pipe in the program above is literally named

sort -t'\t' +1rn

Normally, a file or pipe is created and opened only once during the run of a
program. If the file or pipe is explicitly closed and then reused, it will be
reopened.

Closing Flies and Pipes

The statement close(expr) closes a file or pipe denoted by expr; the string
value of expr must be the same as the string used to create the file or pipe in
the first place. Thus

close("sort -t'\t' +1rn")

closes the sort pipe opened above.
close is necessary if you intend to write a file, then read it later in the

same program. There are also system-defined limits on the number of files and
pipes that can be open at the same time.

2.5 Input
There are several ways of providing input to an awk program. The most

common arrangement is to put input data in a file, say data, and then type

a wk 'program ' data

Awk reads its standard input if no filenames are given; thus, a second com
mon arrangement is to have another program pipe its output into awk. For
example, the program egrep selects input lines containing a specified regular
expression, but it does this much faster than awk does. We could therefore type
the command

60 THE A WK LANGUAGE CHAPTER 2

egrep 'Asia' countries : awk 'program'

eqrep finds the lines containing Asia and passes them on to the awk program
for subsequent processing.

Input Separators

The default value of the built-in variable FS is 11 11
, that is, a single blank.

When FS has this specific value, input fields are separated by blanks and/or
tabs, and leading blanks and tabs are discarded, so each of the following lines
has the same first field:

field1
field1

field1 field2

When FS has any other value, however, leading blanks and tabs are not dis
carded.

The field separator can be changed by assigning a string to the built-in vari
able FS. If the string is longer than one character, it is taken to be a regular
expression. The leftmost longest nonnull and nonoverlapping substrings
matched by that regular expression become the field separators in the current
input line. For example,

BEGIN { FS = ",[\t]*:[\t]+ 11
}

makes every string consisting of a comma followed by blanks and tabs, and
every string of blanks and tabs without a comma, into field separators.

When FS is set to a single character other than blank, that character
becomes the field separator. This convention makes it easy to use regular
expression metacharacters as field separators:

FS = n:n

makes I a field separator. But note that something indirect like

FS = " [] n

is required to set the field separator to a single blank.
FS can also be set on the command line with the - F argument. The com

mand line

awk -F', [\t]*: [\t)+' 'program'

sets the field separator to the same strings as the BEGIN action shown above.

Multiline Records

By default, records are separated by newlines, so the terms "line" and
"record" are normally synonymous. The default record separator can be
changed in a limited way, however, by assigning a new value to the built-in
record-separator variable RS. If RS is set to the null string, as in

SECTION 2.5 INPUT . 61

BEGIN { RS = "" }

then records are separated by one or more blank lines and each record can
therefore occupy several lines. Setting RS back to newline with the assignment
RS = 11 \n" restores the default behavior. With multiline records, no matter
what value FS has, newline is always one of the field separators.

A common way to process multiline records is to use

BEGIN { RS = ""; FS = "\n" }

to set the record separator to one or more blank lines and the field separator to
a newline alone; each line is thus a separate field. There is a limit on how long
a record can be, usually about 3000 characters. Chapter 3 contains more dis
cussion of how to handle multiline records.

The getline Function

The function getl ine can be used to read input either from the current
input or from a file or pipe. By itself, getline fetches the next input record
and performs the normal field-splitting operations on it. It sets NF, NR, and
FNR; it returns I if there was a record present, 0 if end-of-file was encountered,
and -1 if some error occurred (such as failure to open a file).

The expression getline x reads the next record into the variable x and
increments NR and FNR. No splitting is done; NF is not set.

The expression

getline <"file"

reads from file instead of the current input. It has no effect on NR or FNR,
but field splitting is performed and NF is set.

The expression

getline x <"file 11

gets the next record from file into x; no splitting is done, and NF, NR, and
FNR are untouched.

Table 2-11 summarizes the forms of the getline function. The value of
each expression is the value returned by getline.

As an example, this program copies its input to its output, except that each
line like

#include "filename"

is replaced by the contents of the file filename.

62 THE AWK LANGUAGE

TABLE 2-11. GETLINE fUNCTION

EXPRESSION

get line
getline var
getline <file
getline var <file
cmd getline
cmd : getline var

SETS

$0, NF, NR, FNR

var, NR, FNR

$0, NF

var
SO,NF
var

CHAPTER 2

include - replace #include "f" by contents of file f

/"#include/ {
gsub(/"1, "", $2)

}

while (getline x <$2 > 0)
print x

next

{ print }

It is also possible to pipe the output of another command directly into
getline. For example, the statement

while ("who" : getline)
n++

executes the Unix program who (once only) and pipes its output into getline.
The output of who is a list of the users logged in. Each iteration of the while
loop reads one more line from this list and increments the variable n, so after
the while loop terminates, n contains a count of the number of users. Simi
larly, the expression

"date" : getline d

pipes the output of the date command into the variable d, thus setting d to the
current date. Again, input pipes may not be available on non-Unix systems.

In all cases involving getline, you should be aware of the possibility of an
error return if the file can't be accessed. Although it's appealing to write

while (getline <"file") ••• # Dangerous

that's an infinite loop if file doesn't exist, because with a nonexistent file
getline returns -I, a nonzero value that represents true. The preferred way
is

while (getline <"file"> 0) ••• #Safe

Here the loop will be executed only when getline returns 1.

SECTION 2.5 INPUT 63

Command-Line Variable Assignments

As we have seen, an awk command line can have several forms:

awk 'program' f 1 £2 .. .
awk -f progfile f 1 £2 .. .
awk -Fsep 'program' £1 £2
awk -Fsep -£ progfile f 1 f2 •••

In these command lines, f 1, £2, etc., are command-line arguments that nor
mally represent filenames. If a filename has the form var-text, however, it is
treated as an assignment of text to var, performed at the time when that argu
ment would otherwise be accessed as a file. This type of assignment allows vari
ables to be changed before and after a file is read.

Command-Line Arguments

The command-line arguments are available to the awk program in a built-in
array called ARGV. The value of the built-in variable ARGC is one more than
the number of arguments. With the command line

awk -f progfile a v=1 b

ARGC has the value 4, ARGV [0] contains awk, ARGV [1] contains a, ARGV [2]
contains v= 1, and ARGV [3] · contains b. ARGC is one more than the number of
arguments because awk, the name of the command, is counted as argument
zero, as it is in C programs. If the awk program appears on the command line,
however, the program is not treated as an argument, nor is -f filename or any
-F option. For example, with the command line

awk -F'\t' 'S3 > 100' countries

ARGC is 2 and ARGV[1] is countries.
The following program echoes its command-line arguments:

echo - print command-line arguments

BEGIN {

}

for (i = 1; i < ARGC; i++)
print£ "%s ", ARGV[i]

print£ "\n"

Notice that everything happens in the BEGIN action: because there are no other
pattern-action statements, the arguments are never treated as filenames, and no
input is read.

Another program using command-line arguments is seq, which generates
sequences of integers:

64 THE A WK LANGUAGE CHAPTER 2

seq - print sequences of integers
input: arguments q, p q, or p q r; q >= p; r > 0
output: integers 1 to q, p to q, or p to q in steps of r

BEGIN {
if (ARGC == 2)

for (i = 1; i <= ARGV[1]; i++)
print i

else if (ARGC == 3)
for (i = ARGV[1]; i <= ARGV[2]; i++)

print i
else if (ARGC == 4)

for (i = ARGV[1]; i <= ARGV[2]; i += ARGV[3])
print i

The commands

awk -f seq 10
awk -f seq 1 10
awk -f seq 1 10

all generate the integers one through ten.
The arguments in ARGV may be modified or added to; ARGC may be altered.

As each input file ends, awk treats the next nonnull element of ARGV (up
through the current value of ARGC-1) as the name of the next input file. Thus
setting an element of ARGV to null means that it will not be treated as an input
file. The name 11

-
11 may be used for the standard input.

2.6 Interaction with Other Programs
This section describes some of the ways in which awk programs can

cooperate with other commands. The discussion applies primarily to the Unix
operating system; the examples here may fail or work differently on non-Unix
systems.

The system Function

The built-in function system(expression) executes the command given by
the string value of expression. The value returned by system is the status
returned by the command executed.

For example, we can build another version of the file-inclusion program of
Section 2.5 like this:

$1 =="#include" { gsub(/"1, '"', $2); system("cat" $2); next}
{ print }

If the first field is #include, quotes are removed, and the Unix command cat
is called to print the file named in the second field. Other lines are just copied.

?

SECTION 2.6 INTERACTION WITH OTHER PROGRAMS 65

Making a Shell Command from an AWK Program

In all of the examples so far, the awk program was in a file and fetched with
the -f flag, or it appeared on the command line enclosed in single quotes, like
this:

awk '{print $1 }' ...

Since awk uses many of the same characters as the shell does, such as $ and "
surrounding the program with single quotes ensures that the shell will pass the
entire program unchanged to awk.

Both methods of invoking the awk program require some typing. To reduce
the number of keystrokes, we might want to put both the command and the pro
gram into an executable file, and invoke the command by typing just the name
of the file. Suppose we want to create a command field 1 that will print the
first field of each line of input. This is easy: we put

awk '{print $1}' $*

into the file field 1, and make the file executable by typing the Unix com
mand

chmod +x field1

We can now print the first field of each line of a set of files by typing

field 1 filenames ...

Now, consider writing a more general command field that will print an
arbitrary combination of fields from each line of its input; in other words, the
command

will print the specified fields in the specified order. How do we get the value of
each n; into the awk program each time it is run and how do we distinguish the
n; 's from the filename arguments?

There are several ways to do this if one is adept in shell programming. The
simplest way that uses only awk, however, is to scan through the built-in array
ARGV to process the n; 's, resetting each such argument to the null string so that
it is not treated as a filename.

66 THE A WK LANGUAGE

field - print named fields of each input line
usage: field n n n •.. file file file

awk '
BEGIN

CHAPTER 2

for (i = 1; ARGV[i] - /A[0-9]+S/; i++) { # collect numbers
fld[++nf] = ARGV[i]
ARGV[i] = nn

if (i >= ARGC) # no file names so force stdin
ARGV[ARGC++] = "-"

for (i = 1; i <= nf; i++)
printf(""s%s", Sfld[i], i < nf? " " "\n")

This version can deal with either standard input or a list of filename arguments,
and with any number of fields in any order.

2.7 Summary
As we said earlier, this is a long chapter, packed with details, and you are

dedicated indeed if you have read every word to get here. You will find that it
pays to go back and re-read sections from time to time, either to see precisely
how something works, or because one of the examples in later chapters suggests
a construction that you might not have tried before.

Awk, like any language, is best learned by experience and practice, so we
encourage you to go off and write your own programs. They don't have to be
big or complicated - you can usually learn how some feature works or test
some crucial point with only a couple of lines of code, and you can just type in
data to see how the program behaves.

Bibliographic Notes

The programming language C is described in The C Programming
Language, by Brian Kernighan and Dennis Ritchie (Prentice-Hall, 1978).
There are numerous books on how to use the Unix system; The Unix Program
ming Environment, by Brian Kernighan and Rob Pike (Prentice-Hall, 1984)
has an extensive discussion of how to create shell programs that include awk.

3 OAT A PROCESSING

Awk was originally intended for everyday data-processing tasks, such as
information retrieval, data validation, and data transformation and reduction.
We have already seen simple examples of these in Chapters 1 and 2. In this
chapter, we will consider more complex tasks of a similar nature. Most of the
examples deal with the usual line-at-a-time processing, but the final section
describes how to handle data where an input record may occupy several lines.

Awk programs are often developed incrementally: a few lines are written and
tested, then a few more added, and so on. Many of the longer programs in this
book were developed in this way.

It's also possible to write awk programs in the traditional way, sketching the
outline of the program, consulting the language manual, and so forth. But
modifying an existing program to get the desired effect is frequently easier.
The programs in this book thus serve another purpose, providing useful models
for programming by example.

3. 1 Data Transformation and Reduction
One of the most common uses of awk is to transform data from one form to

another, usually from the form produced by one program to a different form
required by some other program. Another use is selection of relevant data from
a larger data set, often with reformatting and the preparation of summary infor
mation. This section contains a variety of examples of these topics.

Summing Columns

We have already seen several variants of the two-line awk program that adds
up all the numbers in a single field. The following program performs a some
what more complicated but still representative data-reduction task. Every input
line has several fields, each containing numbers, and the task is to compute the
sum of each column of numbers, regardless of how many columns there are.

67

68 DATA PROCESSING

sum1 - print column sums
input: rows of numbers
output: sum of each column
missing entries are treated as zeros

for (i = 1; i <= NF; i++)
sum[i] += Si

if (NF > maxfld)
maxfld = NF

END for (i = 1; i <= maxfld; i++) {
printf("%g", sum[i])
if (i < maxfld)

printf("\t")
else

print£ ("\n n)

CHAPTER 3

Automatic initialization is convenient here since maxfld, the largest number of
fields seen so far in any row, starts off at zero automatically, as do all of the
entries in the sum array, even though it's not known until the end how many
there are. It's also worth noting that the program prints nothing if the input file
is empty.

It's convenient that the program doesn't need to be told how many fields a
row has, but it doesn't check that the entries are all numbers, nor that each row
has the same number of entries. The following program does the same job, but
also checks that each row has the same number of entries as the first:

sum2 - print column sums
check that each line has the same number of fields
as line one

NR==1 { nfld = NF }
{ for (i = 1; i <= NF; i++)

sum[i] += Si
if (NF I= nfld)

print 11 line 11 NR " has 11 NF " entries, not " nfld
}

END { for (i = 1; i <= nfld; i++)
printf("%g%s", sum[i], i < nfld? "\t" : "\n")

We also revised the output code in the END action, to show how a conditional
expression can be used to put tabs between the column sums and a newline after
the last sum.

Now suppose that some of the fields are nonnumeric, so they shouldn't be
included in the sums. The strategy is to add an array numcol to keep track of
which fields are numeric, and a function isnum to check if an entry is a
number. This is made a function so the test is only in one place, in anticipation

SECTION 3.1 DATA TRANSFORMATION AND REDUCTION 69

of future changes. If the program can trust its input, it need only look at the
first line to tell if a field will be numeric. The variable nfld is needed because
NF is zero inside the END action.

sum3 - print sums of numeric columns
input: rows of integers and strings
output: sums of numeric columns
assumes every line has same layout

nfld = NF
for (i = 1; i <= NF; i++)

numcol[i] = isnum(Si)

for (i = 1; i <= NF; i++)
if (numcol[i])

sum[i] += Si

END for (i = 1; i <= nfld; i++) {
if (numcol[i])

print£ ("%g 11
, sum[i])

else
print£(11

--
11

)

printf(i < nfld ? 11 \t 11 "\n")

function isnum(n) { return n - /~[+-]?[0-9]+$/ }

The function isnum defines a number as one or more digits, perhaps preceded
by a sign. A more general definition for numbers can be found in the discussion
of regular expressions in Section 2.1.
Exercise 3-1. Modify the program sum3 to ignore blank lines. 0

Exercise 3-2. Add the more general regular expression for a number. How does it
affect the running time? o
Exercise 3-3. What is the effect of removing the test of numcol in the second for
statement? 0

Exercise 3-4. Write a program that reads a list of item and quantity pairs and for each
item on the list accumulates the total quantity; at the end, it prints the items and total
quantities, sorted alphabetically by item. o

Computing Percentages and Quantiles

Suppose that we want not the sum of a column of numbers but what percen
tage each is of the total. This requires two passes over the data. If there's only
one column of numbers and not too much data, the easiest way is to store the
numbers in an array on the first pass, then compute the percentages on the
second pass as the values are being printed:

70 DATA PROCESSING CHAPTER 3

percent
input: a column of nonnegative numbers
output: each number and its percentage of the total

x[NR] S1; sum+= $1

END if (sum I= 0)
for (i = 1; i <= NR; i++)

printf(''%10.2f %5.1£\n", x[i], 100•x[i)/sum)

This same approach, though with a more complicated transformation, could
be used, for example, in adjusting student grades to fit some curve. Once the
grades have been computed (as numbers between 0 and 1 00), it might be
interesting to see a histogram:

histogram
input: numbers between 0 and 100
output: histogram of deciles

x[int($1/10)]++

END for (i = 0; i < 10; i++)
print£(" %2d- %2d: %3d %s\n",

10•i, 10•i+9, x[i], rep(x[i],"•"))
printf("100: %3d %s\n", x[10], rep(x[10],"•"))

function rep(n,s, t)
while (n-- > 0)

t = t s
return t

}

return string of n s's

Note how the postfix decrement operator --is used to control the while loop.
We can test histogram with some randomly generated grades. The first

program in the pipeline below generates 200 random numbers between 0 and
100, and pipes them into the histogram maker.

awk '
generate random integers
BEGIN { for (i = 1; i <= 200; i++)

print int(101•rand())

' I I

awk -f histogram

It produces this output:

SECTION 3.1

0 - 9:
10 - 19:
20 - 29:
30 - 39:
40 - 49:
so - 59:
60 - 69:
70 - 79:
80 - 89:
90 - 99:

100:

DATA TRANSFORMATION AND REDUCTION 71

21 *********************
20 ********************
15 ***************
29 *****************************
23 ***********************
16 ****************
16 ****************
20 ********************
12 ************
27 ***************************

1 *

Exercise 3-5. Scale the rows of stars so they don't overflow the line length when there's
a lot of data. 0

Exercise 3-6. Make a version of the histogram code that divides the input into a speci
fied number of buckets, adjusting the ranges according to the data seen. D

Numbers with Commas

Suppose we have a list of numbers that contain commas and decimal points,
like 12,345. 67. Since awk thinks that the first comma terminates a number,
these numbers cannot be summed directly. The commas must first be erased:

sumcomma - add up numbers containing commas

gsub(/,1, ""); sum+= $0 }
END print sum }

The effect of gsub (I, I, " ") is to replace every comma with the null string,
that is, to delete the commas.

This program doesn't check that the commas are in the right places, nor
does it print commas in its answer. Putting commas into numbers requires only
a little effort, as the next program shows. It formats numbers with commas and
two digits after the decimal point. The structure of this program is a useful one
to emulate: it contains a function that only does the new thing, with the rest of
the program just reading and printing. After it's been tested and is working,
the new function can be included in the final program.

The basic idea is to insert commas from the decimal point to the left in a
loop; each iteration puts a comma in front of the leftmost three digits that are
followed by a comma or decimal point, provided there will be at least one addi
tional digit in front of the comma. The algorithm uses recursion to handle
negative numbers: if the input is negative, the function addcomma calls itself
with the positive value, tacks on a leading minus sign, and returns the result.

72 DATA PROCESSING

addcomma - put commas in numbers
input: a number per line
output: the input number followed by

CHAPTER 3

the number with commas and two decimal places

print£ ("%-12s %20s\n", $0, addcomma($0)) }

function addcomma(x, num) {
if (x < 0)

return "-" addcomma(-x)
num = sprint£ ("%. 2£", x) # num is dddddd. dd
while (num - /[0-9][0-9][0-9][0-9)/)

sub(/[0-9][0-9)[0-9][,.)/, ",&", num)
return num

Note the use of the &. in the replacement text for sub to add a comma before
each triplet of numbers.

Here are the results for some test data:

0
-1
-12.34
12345
-1234567.89
-123.
-123456

0.00
-1.00

-12.34
12,345.00

-1,234,567.89
-123.00

-123,456.00

Exercise 3-7. Modify sumcomma, the program that adds numbers with commas, to
check that the commas in the numbers are properly positioned. D

Fixed-Field Input

Information appearing in fixed-width fields often requires some kind of
preprocessing before it can be used directly. Some programs, such as
spreadsheets, put out numbers in fixed columns, rather than with field separa
tors; if the numbers are too wide, the columns abut. Fixed-field data is best
handled with substr, which can be used to pick apart any combination of
columns. For example, suppose the first six characters of each line contain a
date in the form mmddyy. The easiest way to sort this by date is to convert the
dates into the form yymmdd:

date convert - convert mmddyy into yymmdd in $1

$1 = substr($1,5,2) substr($1,1,2) substr($1,3,2); print }

On input sorted by month, like this:

SECTION 3.1

013042 mary's birthday
032772 mark's birthday
052470 anniversary

DATA TRANSFORMATION AND REDUCTION 73

061209 mother's birthday
110175 elizabeth's birthday

it produces the output

420130 mary's birthday
720327 mark's birthday
700524 anniversary
090612 mother's birthday
751101 elizabeth's birthday

which is ready to be sorted by year, month and day.
Exercise 3-8. How would you convert dates into a form in which you can do arithmetic
like computing the number of days between two dates'? 0

Program Cross-Reference Checking

Awk is often used to extract information from the output of other programs.
Sometimes that output is merely a set of homogeneous lines, in which case
field-splitting or substr operations are quite adequate. Sometimes, however,
the upstream program thinks its output is intended for people. In that case, the
task of the awk program is to undo careful formatting, so as to extract the
information from the irrelevant. The next example is a simple instance.

Large programs are built from many files. It is convenient (and sometimes
vital) to know which file defines which function, and where the function is used.
To that end, the Unix program nm prints a neatly formatted list of the names,
definitions, and uses of the names in a set of object files. A typical fragment of
its output looks like this:

file.o:
00000c80 T
00000b30 T
00000a3c T

u
u
u

funmount.o:

addroot
-checkdev
-checkdupl
-chown
client
close

00000000 T funmount
U cerror

Lines with one field (e.g., file. o) are filenames, lines with two fields (e.g., u
and close) are uses of names, and lines with three fields are definitions of
names. T indicates that a definition is a text symbol (function) and U indicates
that the name is undefined.

Using this raw output to determine what file defines or uses a particular
symbol can be a nuisance, since the filename is not attached to each symbol.
For a C program the list can be long - it's 850 lines for the nine files of source

7 4 DATA PROCESSING CHAPTER 3

that make up awk itself. A three-line awk program, however, can add the name
to each item, so subsequent programs can retrieve the useful information from
one line:

nm.format - add filename to each nm output line

NF == { file = $1 }
NF == 2 { print file, $1, $2 }
NF == 3 { print file, S2, $3 }

The output from run. format on the data shown above is

file.o: T addroot
file.o: T -checkdev
file.o: T -checkdupl
file.o: U -chown
file.o: U -client
file.o: U -close
funmount.o: T funmount
funmount.o: u cerror

Now it is easy for other programs to search this output or process it further.
This technique does not provide line number information nor tell how many

times a name is used in a file, but these things can be found by a text editor or
another awk program. Nor does it depend on which language the programs are
written in, so it is much more flexible than the usual run of cross-referencing
tools, and shorter and simpler too.

Formatted Output

As another example we'll use awk to make money, or at least to print
checks. The input consists of lines, each containing a check number, an
amount, and a payee, separated by tabs. The output goes on check forms, eight
lines high. The second and third lines have the check number and date indented
45 spaces, the fourth line contains the payee in a field 45 characters long, fol
lowed by three blanks, followed by the amount. The fifth line contains the
amount in words, and the other lines are blank. A check looks like this:

1026
Jun 17, 1987

Pay to Mary R. Worth-------------------------------- $123.45
the sum of one hundred twenty three dollars and 45 cents exactly

Here is the code:

SECTION 3.1 DATA TRANSFORMATION AND REDUCTION 75

prchecks - print formatted checks
input: number \ t amount \ t payee
output: eight lines of text for preprinted check forms

BEGIN {
FS = "\t"
dashes ::::: sp45 = sprintf("%45s", " ")
gsub (I I, "-" , dashes) # to protect the payee
"date" I getline date # get today's date
split(date, d, n ")

date = d[2] It n d[3] ", It d[6]
initnum() #set up tables for number conversion

NF l= 3 II S2 >= 1000000 { #illegal data
printf("\nline %d illegal:\n%s\n\nVOID\nVOID\n\n\n", NR, SO)
next # no check printed

printf("\n") #nothing on line 1
printf("%s%s\n", sp45, $1) #number, indented 45 spaces
printf("%s%s\n", sp45, date) #date, indented 45 spaces
amt = sprintf("%.2£", S2) #formatted amount
printf("Pay to %45.45s S%s\n", $3 dashes, amt) # line 4
printf("the sum of %s\n", numtowords(amt)) #line 5
printf("\n\n\n") #lines 6, 7 and 8

function numtowords(n, cents, dols) { # n has 2 decimal places
cents ::::: substr(n, length(n)-1, 2)
dols = substr(n, 1, length(n)-3)
if (dols == 0)

return "zero dollars and " cents " cents exactly"
return intowords(dols) " dollars and " cents " cents exactly"

function intowords(n)
n = int(n)
if (n >= 1000)

return intowords(nl1000) II thousand II intOWOrds(n%1000)
if (n >= 100)

return intowords(nl100) n hundred n intowords(n%100)
if (n >= 20)

return tens[int(nl10)] " " intowords(n%10)
return nums[n]

function initnum() {
split("one two three four five six seven eight nine 11

\

"ten eleven twelve thirteen fourteen fifteen 11
\

"sixteen seventeen eighteen nineteen", nums, " ")
split("ten twenty thirty forty fifty sixty " \

"seventy eighty ninety", tens, " 11
)

7 6 DATA PROCESSING CHAPTER 3

The program contains several interesting constructs. First, notice how we
generate a long string of blanks in the BEGIN action with sprint£, and then
convert them to dashes by substitution. Note also how we combine line con
tinuation and string concatenation to create the string argument to split in
the function ini tnum; this is a useful idiom.

The date comes from the system by the line

"date" I getline date # get today's date

which runs the date command and pipes its output into qetline. A little
processing converts the date from

Wed Jun 17 13:39:36 EDT 1987

into

Jun 17, 1987

(This may need revision on non-Unix systems that do not support pipes.)
The functions numtowords and intowords convert numbers to words.

They are straightforward, although about half the program is devoted to them.
The function intowords is recursive: it calls itself to deal with a simpler part
of the problem. This is the second example of recursion in this chapter, and we
will see others later on. In each case, recursion is an effective way to break a
big job into smaller, more manageable pieces.

Exercise 3·9. Use the function addcomma from a previous example to include commas
in the printed amount. 0

Exercise 3-10. The program prchecks does not deal with negative quantities or very
long amounts in a graceful way. Modify the program to reject requests for checks for
negative amounts and to split very long amounts onto two lines. 0

Exercise 3-11. The function numtowords sometimes puts out two blanks in a row. It
also produces blunders like "one dollars." How would you fix these defects? o

Exercise 3-12. Modify the program to put hyphens into the proper places in spelled-out
amounts, as in "twenty-one dollars." 0

3.2 Data Validation
Another common use for awk programs is data validation: making sure that

data is legal or at least plausible. This section contains several small programs
that check input for validity. For example, consider the column-summing pro
grams in the previous section. Are there any numeric fields where there should
be nonnumeric ones, or vice versa? Such a program is very close to one we saw
before, with the summing removed:

SECTION 3.2

colcheck - check consistency of columns
input: rows of numbers and strings

DATA VALIDATION 77

output: lines whose format differs from first line

NR == 1 {
nfld = NF
for (i = 1; i <= NF; i++)

type[i] = isnum($i)

if (NF I= nfld)
printf("line %d has %d fields instead of %d\.n",

NR, NF, nfld)
for (i = 1; i <= NF; i++)

if (isnum($i) I= type[i])
printf("field %d in line %d differs from line 1\n",

i, NR)

function isnum(n) { return n - /A[+-]?[0-9]+$/ }

The test for numbers is again just a sequence of digits with an optional sign; see
the discussion of regular expressions in Section 2.1 for a more complete version.

Balanced Delimiters

In the machine-readable text of this book, each program is introduced by a
line beginning with • P 1 and is terminated by a line beginning with • P2. These
lines are text-formatting commands that make the programs come out in their
distinctive font when the text is typeset. Since programs cannot be nested, these
text-formatting commands must form an alternating sequence

. P 1 • P2 . P 1 . P2 P 1 . P2

If one or the other of these delimiters is omitted, the output will be badly man
gled by our text formatter. To make sure that the programs would be typeset
properly, we wrote this tiny delimiter checker, which is typical of a large class
of such programs:

p12check - check input for alternating .P1/.P2 delimiters

/A\.P1/ { if (p I= 0)

/"\.P2/

END

print ".P1 after .P1, line", NR
p = 1

if (p I= 1)
print " . P2 with no preceding . P 1 , line" , NR

p = 0

if (p I= 0) print "missing .P2 at end" }

If the delimiters are in the right order, the variable p silently goes through the
sequence of values 0 1 0 1 0 ... 1 0. Otherwise, the appropriate error messages

78 DATA PROCESSING CHAPTER 3

are printed.

Exercise 3-13. What is the best way to extend this program to handle multiple sets of
delimiter pairs? D

Password-File Checking

The password file on a Unix system contains the name of and other informa
tion about authorized users. Each line of the password file has 7 fields,
separated by colons:

root:qyxRi2uhuVjrg:0:2::/:
bwk:1L./v6iblzzNE:9:1:Brian Kernighan:/usr/bwk:
ava:otxs1oTVoyvMQ:15:1:Al Aho:/usr/ava:
uucp:xutiBs2hKtcls:48:1:uucp daemon:/usr/lib/uucp:uucico
pjw:xNqy//GDc8FFg:170:2:Peter Weinberger:/usr/pjw:
mark:jOz1fuQmqivdE:374:1:Mark Kernighan:/usr/bwk/mark:

The first field is the user's login name, which should be alphanumeric. The
second is an encrypted version of the password; if this field is empty, anyone can
log in pretending to be that user, while if there is a password, only people who
know the password can log in. The third and fourth fields are supposed to be
numeric. The sixth field should begin with /. The following program prints all
lines that fail to satisfy these criteria, along with the number of the erroneous
line and an appropriate diagnostic message. Running this program every night
is a small part of keeping a system healthy and safe from intruders.

passwd - check password file

BEGIN {
FS = ":" }

NF I= 7 {
printf("line ~d, does not have 7 fields: ~s\n", NR, SO) }

S1 - /(AA-Za-z0-9)/ {
printf("line %d, nonalphanumeric user id: ~s\n", NR, SO) }

S2 == "" {
printf("line %d, no password: %s\n", NR, SO) }

$3 - /[A0-9]/ {
printf("line %d, nonnumeric user id: ~s\n", NR, SO) }

S4 - /[A0-9]/ {
printf("line %d, nonnumeric group id: %s\n", NR, SO)

S6 ·- /A\// {
printf("line ~d, invalid login directory: ~s\n", NR, SO)

This is a good example of a program that can be developed incrementally:
each time someone thinks of a new condition that should be checked, it can be
added, so the program steadily becomes more thorough.

SECTION 3.2 DATA VALIDATION 79

Generating Data-Validation Programs

We constructed the password-file checking program by hand, but a more
interesting approach is to convert a set of conditions and messages into a check
ing program automatically. Here is a small set of error conditions and mes
sages, where each condition is a pattern from the program above. The error
message is to be printed for each input line where the condition is true.

NF I= 7 does not have 7 fields
$1 - /[~A-Za-z0-9]/ nonalphanumeric user id
$2 == "" no password

The following program converts these condition-message pairs into a checking
program:

checkgen - generate data-checking program
input: expressions of the form: pattern tabs message
output: program to print message when pattern matches

BEGIN { FS = "\t+" }
{ printf(11 %s {\n\tprintf(\"line %%d, %s: %%s\\n\",NR,$0) }\n",

$1' $2)
}

The output is a sequence of conditions and the actions to print the correspond
ing messages:

NF I= 7 {
printf("line %d, does not have 7 fields: %s\n",NR,$0) }

$1 - /[~A-Za-z0-9]/ {
printf("line %d, nonalphanumeric user id: %s\n",NR,$0) }

$2 == "" {
printf("line %d, no password: %s\n",NR,$0) }

When the resulting checking program is executed, each condition will be tested
on each line, and if it is satisfied, the line number, error message, and input line
will be printed. Note that in checkgen, some of the special characters in the
printf format string must be quoted to produce a valid generated program.
For example, %is preserved by writing%% and \n is created by writing \ \n.

This technique in which one awk program creates another is broadly applica
ble (and of course it's not restricted to awk programs). We will see several
more examples of its use throughout this book.
Exercise 3-14. Add a facility to checkgen so that pieces of code can be passed through
verbatim, for example, to create a BEGIN action to set the field separator. 0

Which Version of AWK?

Awk is often useful for inspecting programs, or for organizing the activities
of other testing programs. This section contains a somewhat incestuous exam
ple: a program that examines awk programs.

The new version of the language has more built-in variables and functions,

80 OAT A PROCESSING CHAPTER 3

so there is a chance that an old program may inadvertently include one of these
names, for example, by using as a variable name a word like sub that is now a
built-in function. The following program does a reasonable job of detecting
such problems in old programs:

compat - check if awk program uses new built-in names

BEGIN { asplit("close system atan2 sin cos rand srand " \
"match sub gsub 11

, fens)

I" I
/\II
/#/

asplit("ARGC ARGV FNR RSTART RLENGTH SUBSEP", vars)
asplit("do delete function return", keys)

line = SO }

gsub(/"(["'"ll\\")•"1, , line)}
gsub(/\/(["'\/)1\\\/)+\//, "", line)
sub(/#.•/, "", line) }

remove strings,
reg exprs,
and comments

n = split(line, x, "["'A-Za-z0-9]+") # into words
for (i = 1; i <= n; i++) { -

if (x[i] in fens)
warn(x[i] " is now a built-in function")

if (x[i] in vars)
warn(x(i] " is now a built-in variable")

if (x[i] in keys)
warn(x(i] " is now a keyword")

function asplit(str, arr) { # make an assoc array from str
n = split(str, temp)
for (i = 1; i <= n; i++)

arr[temp[i]]++
return n

function warn(s) {
sub(/"'(\t)•l, "")
printf(11 file %s, line %d: %s\n\t%s\n", FILENAME, FNR, s, SO)

The only real complexity in this program is in the substitution commands
that attempt to remove quoted strings, regular expressions, and comments before
an input line is checked. This job isn't done perfectly, so some lines may not be
properly processed.

The third argument of the first split function is a string that is interpreted
as a regular expression. The leftmost longest substrings matched by this regular
expression in the input line become the field separators. The split command
divides the resulting input line into alphanumeric strings by using nonalpha
numeric strings as the field separator; this removes all the operators and

SECTION 3.3 BUNDLE AND UNBUNDLE 81

punctuation at once.
The function aspli t is just like split, except that it creates an array

whose subscripts are the words within the string. Incoming words can then be
tested for membership in this array.

This is the output of compat on itself:

file compat, line 12: gsub is now a built-in function
1\11 { gsub(/\/(["\/]:\\\/}+\1/, '"',line)}# reg exprs,

file compat, line 13: sub is now a built-in function
1#1 { sub(/#.*/, "", line) } #and comments

file compat, line 26: function is now a keyword
function asplit(str, arr) { # make an assoc array from str

file compat, line 30: return is now a keyword
return n

file compat, line 33: function is now a keyword
function warn(s) {

file compat, line 34: sub is now a built-in function
sub(/"[\t]*/, "")

file compat, line 35: FNR is now a built-in variable
printf("file %s, line %d: %s\n\t%s\n", FILENAME, FNR, s, $0)

Exercise 3-15. Rewrite compat to identify keywords, etc., with regular expressions
instead of the function aspli t. Compare the two versions on complexity and speed. o

Exercise 3-16. Because awk variables are not declared, a misspelled name will not be
detected. Write a program to identify names that are used only once. To make it truly
useful, you will have to handle function declarations and variables used in functions. O

3.3 Bundle and Unbundle

Before discussing multiline records, let's consider a special case. The prob
lem is to combine ("bundle") a set of ASCII files into one file in such a way
that they can be easily separated ("unbundled") into the original files. This
section contains two tiny awk programs that do this pair of operations. They
can be used for bundling small files together to save disk space, or to package a
collection of files for convenient electronic mailing,

The bundle program is trivial, so short that you can just type it on a com
mand line. All it does is prefix each line of the output with the name of the
file, which comes from the built-in variable FILENAME.

bundle - combine multiple files into one

print FILENAME, $0 }

The matching unbundle is only a little more elaborate:

82 DATA PROCESSING CHAPTER 3

unbundle - unpack a bundle into separate files

$ 1 l = prev { close (prev) ; 'prev = $1 }
{ print substr($0, index($0, " "} + 1) >$1 }

The first line of unbundle closes the previous file when a new one is encoun
tered; if bundles don't contain many files Oess than the limit on the number of
open files), this line isn't necessary.

There are other ways to write bundle and unbundle, but the versions here
are the easiest, and for short files, reasonably space efficient. Another organiza
tion is to add a distinctive line with the filename before each file, so the
filename appears only once.
Exercise 3-17. Compare the speed and space requirements of these versions of bundle
and unbundle with variations that use headers and perhaps trailers. Evaluate the
tradeoff between performance and program complexity. D

3.4 Multiline Records
The examples so far have featured data where each record fits neatly on one

line. Many other kinds of data, however, come in multiline chunks. Examples
include address lists:

Adam Smith
1234 Wall St., Apt. 5C
New York, NY 10021
212 555-4321

or bibliographic citations:

Donald E. Knuth
The Art of Computer Programming
Volume 2: Seminumerical Algorithms, Second Edition
Addison-Wesley, Reading, Mass.
1981

or personal databases:

Chateau Lafite Rothschild 1947
12 bottles @ 12.95

It's easy to create and maintain such information if it's of modest size and
regular structure; in effect, each record is the equivalent of an index card.
Dealing with such data in awk requires only a bit more work than single-line
data does; we'll show several approaches.

Records Separated by Blank Lines

Imagine an address list, where each record contains on the first four lines a
name, street address, city and state, and phone number; after these, there may

SECTION 3.4 MULTILINE RECORDS 83

be additional lines of other information. Records are separated by a single
blank line:

Adam Smith
1234 Wall St., Apt. 5C
New York, NY 10021
212 555-4321

David w. Copperfield
221 Dickens Lane
Monterey, CA 93940
408 555-0041
work phone 408 555-6532
Mary, birthday January 30

Canadian Consulate
555 Fifth Ave
New York, NY
212 586-2400

When records are separated by blank lines, they can be manipulated
directly: if the record separator variable RS is set to null (RS=" "), each multi
line group becomes a record. Thus

BEGIN { RS = nn }

/New York/

will print each record that contains New York, regardless of how many lines it
has:

Adam Smith
1234 Wall St., Apt. 5C
New York, NY 10021
212 555-4321
Canadian Consulate
555 Fifth Ave
New York, NY
212 586-2400

When several records are printed in this way, there is no blank line between
them, so the input format is not preserved. The easiest way to fix this is to set
the output record separator ORS to a double newline \n\n:

BEGIN { RS = ""; ORS = "\n\n" }
/New York/

Suppose we want to print the names and phone numbers of all Smith's, that
f is, the first and fourth lines of all records in which the first line ends with

Smith. That would be easy if each line were a field. This can be arranged by
setting FS to \n:

84 DATA PROCESSING CHAPTER 3

BEGIN { RS = ""; FS = "\n 11
}

$1 - /Smith$/ { print $1, $4 } #name, phone

This produces

Adam Smith 212 555-4321

Recall that newline is always a field separator for multiline records, regardless
of the value of FS. When RS is set to " 11

, the field separator by default is any
sequence of blanks and tabs, or newline. When FS is set to \n, only a newline
acts as a field separator.

Processing Multiline Records

If an existing program can process its input only by lines, we may still be
able to use it for multiline records by writing two awk programs. The first com
bines the multiline records into single-line records that can be processed by the
existing program. Then, the second transforms the processed output back into
the original multiline format. (We'll assume that limits on line lengths are not
a problem.)

To illustrate, let's sort our address list with the Unix sort command. The
following pipeline sorts the address list by last name:

pipeline to sort address list by last names

awk '
BEGIN RS = ""; FS = 11 \n" }

' I I

sort
awk '

printf(11 %s ll#", x[split($1, x, " ")])
for (i = 1; i <= NF; i++)

printf("%s%s 11
, $i, i < NF? "ll#"

BEGIN FS = II I l#" }
for (i = 2; i <= NF; i++)

printf("%s\n", $i)
printf ("\n 11

)

"\n")

In the first program, the function split ($1, x, 11 11
) splits the first line of

each record into the array x and returns the number of elements created; thus,
x [split ($1, x, 11 11

)] is the entry for the last name. (This assumes that
the last word on the first line really is the last name.) For each multiline record
the first program creates a single line consisting of the last name, followed by
the string I I#, followed by all the fields in the record separated by this string.
Any other separator that does not occur in the data and that sorts earlier than
the data could be used in place of the string l I#. The program after the sort
reconstructs the multiline records using this separator to identify the original

SECTION 3.4 MULTILINE RECORDS 85

fields.

(. Exercise 3-18. Modify the first awk program to detect occurrences of the magic string
I I# in the data. D

Records with Headers and Trailers

Sometimes records are identified by a header and trailer, rather than by a
record separator. Consider a simple example, again an address list, but this
time each record begins with a header that indicates some characteristic, such
as occupation, of the person whose name follows, and each record (except possi
bly the last) is terminated by a trailer consisting of a blank line:

accountant
Adam Smith
1234 Wall St., Apt. SC
New York, NY 10021

doctor - ophthalmologist
Dr. Will Seymour
798 Maple Blvd.
Berkeley Heights, NJ 07922

lawyer
David w. Copperfield
221 Dickens Lane
Monterey, CA 93940

doctor - pediatrician
Dr. Susan Mark
600 Mountain Avenue
Murray Hill, NJ 07974

A range pattern is the simplest way to print the records of all doctors:

/"'doctor/, /"$/

The range pattern matches records that begin with doctor and end with a
blank line (/"' $/ matches a blank line).

To print the doctor records without headers, we can use

/"doctor/
p == 1
/"$/

p

p

1; next

0; next

This program uses a variable p to control the printing of lines. When a line
containing the desired header is found, p is set to one; a subsequent line con
taining a trailer resets p to zero, its default initial value. Since lines are printed
only when p is set to one, only the body and trailer of each record are printed;
other combinations are easily selected instead.

86 DATA PROCESSING CHAPTER 3

Name-Value Data

In some applications data may have more structure than can be captured by
a sequence of unformatted lines. For instance, addresses might include a coun
try name, or might not have a street address.

One way to deal with structured data is to add an identifying name or key
word to each field of each record. For example, here is how we might organize
a checkbook in this format:

check 1021
to Champagne Unlimited
amount 123.10
date 1/1/87

deposit
amount 500.00
date 1/1/87

check 1022
date 1/2/87
amount 45.10
to Getwell Drug Store
tax medical

check 1023
amount 125.00
to International Travel
date 1/3/87

amount 50.00
to Carnegie Hall
date 1/3/87
check 1024
tax charitable contribution

to American Express
check 1025
amount 75.75
date 1/5/87

We are still using multiline records separated by a single blank line, but within
each record, every piece of data is self-identifying: each field consists of an item
name, a tab, and the information. That means that different records can con
tain different fields, or similar fields in arbitrary order.

One way to process this kind of data is to treat it as single lines, with occa
sional blank lines as separators. Each line identifies the value it corresponds to,
but they are not otherwise connected. So to accumulate the sums of deposits
and checks, for example, we could simply scan the input for deposits and checks,
like this:

SECTION 3.4 MULTILINE RECORDS 87

check1 - print total deposits and checks

/~check/ { ck = 1; next }
/~deposit/ { dep = 1; next }
/~amount/ { amt = $2; ne~t }
/~$/ { addup() }

END { addup()
printf("deposits $%.2f, checks $%.2f'n",

deposits, checks)

function addup() {
if (ck)

checks += amt
else if (dep)

deposits += amt
ck = dep = amt = 0

which produces
deposits $500.00, checks $418.95

This is easy, and it works (on correct input) no matter what order the items
of a record appear in. But it is delicate, requiring careful initialization, reini
tialization, and end-of-file processing. Thus an appealing alternative is to read
each record as a unit, then pick it apart as needed. The following program
computes the same sums of deposits and checks, using a function to extract the
value associated with an item of a given name:

check2 - print total deposits and checks

BEGIN { RS = ""; FS = "'n" }
I (~ l 'n) deposit/ { deposits += field (t• amount") ; next }
/(~l,n)check/ { checks+= field("amount"); next}
END { printf("deposits $%.2f, checks $%.2f'n",

deposits, checks)

function field(name, i,f) {
for (i = 1; i <= NF; i++)

split($i, f, "'t")

}

}

if (f[1] ==name)
return f[2]

printf("error: no field %s in record,n%s'n", name, $0)

The function field(s) finds an item in the current record whose name is s; it
returns the value associated with that name.

A third possibility is to split each field into an associative array and access
that for the values. To illustrate, here is a program that prints the check

88 DATA PROCESSING

information in a more compact form:

1/1/87
1/2/87
1/3/87
1/3/87
1/5/87

The program is:

1021
1022
1023
1024
1025

$123.10
$45.10

$125.00
$50.00
$75.75

Champagne Unlimited
Getwell Drug Store
International Travel
Carnegie Hall
American Express

check3 - print check information

BEGIN { RS = ""; FS = "\n" }
/("1\n)check/ {

for (i = 1; i <= NF; i++)
split(Si, £, "\t")
val[£[1]] = £[2]

}

print£ ("%8s %5d %8s %s\n 11
,

val["date"],
val["check"],
sprint£("$%. 2£", val["amount 11

]),

val["to"])
for (i in val)

delete val[i]

CHAPTER 3

Note the use of sprint£ to put a dollar sign in front of the amount; the result
ing string is then right-justified by print£.

Exercise 3-19. Write a command lookup x y that will print from a known file all
multiline records having the item name x with value y. 0

3.5 Summary

In this chapter, we've presented programs for a variety of different data
processing applications: fetching information from address lists, computing sim
ple statistics from numerical data, checking data and programs for validity, and
so forth. There are several reasons why such diverse tasks are fairly easy to do
in awk. The pattern-action model is a good match to this kind of processing.
The adjustable field and record separators accommodate data in a variety of
shapes and formats; associative arrays are convenient for storing both numbers
and strings; functions like split and substr are good at picking apart textual
data; and print£ is a flexible output formatter. In the following chapters,
we'll see further applications of these facilities.

4 REPORTS AND OAT ABASES

This chapter shows how awk can be used to extract information and generate
reports from data stored in files. The emphasis is on tabular data, but the tech
niques apply to more complex forms as well. The theme is the development of
programs that can be used with one another. We will see a number of common
data-processing problems that are hard to solve in one step, but easily handled
by making several passes over the data.

The first part of the chapter deals with generating reports by scanning a sin
gle file. Although the format of the final report is of primary interest, there are
complexities in the scanning too. The second part of the chapter describes one
approach to collecting data from several interrelated files. We've chosen to do
this in a fairly general way, by thinking of the group of files as a relational
database. One of the advantages is that fields can have names instead of
numbers.

4. 1 Generating Reports
Awk can be used to select data from files and then to format the selected

data into a report. We will use a three-step process to generate reports:
prepare, sort, format. The preparation step involves selecting data and perhaps
performing computations on it to obtain the desired information. The sort step
is necessary if we want to order the data in some particular fashion. To per
form this step we pass the output of the preparation program into the system
sort command. The formatting step is done by a second awk program that gen
erates the desired report from the sorted data. In this section we will generate a
few reports from the countries file of Chapter 2 to illustrate the approach.

A Simple Report

Suppose we want a report giving the population, area, and population density
of each country. We would like the countries to be grouped by continent, and
the continents to be sorted alphabetically; within each continent the countries

89

90 REPORTS AND DATABASES CHAPTER 4

are to be listed in decreasing order of population density, like this:

CONTINENT COUNTRY POPULATION AREA POP. DEN.
Asia Japan 120 144 833.3
Asia India 746 1267 588.8
Asia China 1032 3705 278.5
Asia USSR 275 8649 31.8
Europe Germany 61 96 635.4
Europe England 56 94 595.7
Europe France 55 211 260.7
North America Mexico 78 762 102.4
North America USA 237 3615 65.6
North America Canada 25 3852 6.5
South America Brazil 134 3286 40.8

The first two steps in preparing this report are done by the program prep 1,
which, when applied to the file countries, determines the relevant informa
tion and sorts it:

prep1 - prepare countries by continent and pop. den.

BEGIN FS = "\t" }
printf{"%s:%s:%d:%d:%.1f\n",

$4, $1, $3, S2, 1000*$3/$2) l "sort -t: +0 -1 +4rn"

The output is a sequence of lines containing five fields, separated by colons, that
give the continent, country, population, area, and population density:

Asia:Japan:120:144:833.3
Asia:India:746:1267:588.8
Asia:China:1032:3705:278.5
Asia:USSR:275:8649:31.8
Europe:Germany:61:96:635.4
Europe:England:56:94:595.7
Europe:France:55:211:260.7
North America:Mexico:78:762:102.4
North America:USA:237:3615:65.6
North America:Canada:25:3852:6.5
South America:Brazil:134:3286:40.8

We wrote prep1 to print directly into the Unix sort command. The -t:
argument tells sort to use a colon as its field separator. The +0 -1 arguments
make the first field the primary sort key. The +4rn argument makes the fifth
field, in reverse numeric order, the secondary sort key. (In Section 6.3, we will
show a sort-generator program that creates these lists of options from a descrip
tion in words.)

If your system does not support printing into a pipe, remove the sort com
mand and just print into a file with print >file; the file can be sorted in a
separate step. This applies to all the examples in this chapter.

We have completed the preparation and sort steps; all we need now is to for
mat this information into the desired report. The program form 1 does the job:

SECTION 4.1 GENERATING REPORTS 91

form1 - format countries data by continent, pop. den.

BEGIN { FS = ":"
printf("%-15s %-10s %10s %7s %12s\n",

"CONTINEt..tT", "COUNTRY", "POPULATION",
"AREA", "l-OP. DEN.")

printf("%-15s %-10s %7d %10d %10.1£\n",
$1, $2, $3, $4, $5)

The desired report can be generated by typing the command line

awk -f prep1 countries : awk -f form1

The peculiar arguments to sort in prep1 can be avoided by having the
program format its output so that sort doesn't need any arguments, and then
having the formatting program reformat the lines. By default, the sort com
mand sorts its input lexicographically. In the final report, the output needs to
be sorted alphabetically by continent and in reverse numerical order by popula
tion density. To avoid arguments to sort, the preparation program can put at
the beginning of each line a quantity depending on continent and population
density that, when sorted lexicographically, will automatically order the output
correctly. One possibility is a fixed-width representation of the continent fol
lowed by the reciprocal of the populati<?n density, as in prep2:

prep2 - prepare countries by continent, inverse pop. den.

BEGIN { FS = "\t"}
{ den = 1000*$3/$2

printf("%-15s:%12.8f:%s:%d:%d:%.1f\n",
$4, 1/den, $1, $3, $2, den) : "sort"

With the countries file as input, here is the output from prep2:

Asia 0.00120000:Japan:120:144:833.3
Asia 0.00169839:India:746:1267:588.8
Asia 0.00359012:China:1032:3705:278.5
Asia 0.03145091:USSR:275:8649:31.8
Europe 0.00157377:Germany:61:96:635.4
Europe 0.00167857:England:S6:94:595.7
Europe 0.00383636:France:SS:211:260.7
North America 0.00976923:Mexico:78:762:102.4
North America 0.01525316:USA:237:3615:65.6
North America 0.15408000:Canada:25:3852:6.5
South America 0.02452239:Brazi1:134:3286:40.8

The format %-15s is wide enough for all the continent names, and %12. Sf
covers a wide range of reciprocal densities. The final formatting program is like
form 1 but skips the new second field. The trick of manufacturing a sort key
that simplifies the sorting options is quite general. We'll use it again in an

92 REPORTS AND DATABASES CHAPTER 4

indexing program in Chapter 5.
If we would like a slightly fancier report in which only the first occurrence

of each continent name is printed, we can use the formatting program form2 in
place of form1:

form2 - format countries by continent, pop. den.

BEGIN { FS = ":"
printf("%-15s %-10s %10s %7s %12s\n",

"CONTINENT", "COUNTRY", "POPULATION",
"AREA", "POP. DEN.")

if ($1 I= prev) {
print 1111

prev = $1
} else

$1 = 1111

printf("%-15s %-10s %7d %10d %10.1f\n",
$1, $2, $3, $4, $5)

The command line

awk -f prep1 countries

generates this report:

CONTINENT COUNTRY

Asia Japan
India
China
USSR

Europe Germany
England
France

North America Mexico
USA
Canada

South America Brazil

awk -f form2

POPULATION AREA

120 144
746 1267

1032 3705
275 8649

61 96
56 94
55 211

78 762
237 3615

25 3852

134 3286

POP. DEN.

833.3
588.8
278.5

31.8

635.4
595.7
260.7

102.4
65.6
6.5

40.8

The formatting program form2 is a "control-break" program. The variable
prev keeps track of the value of the continent field; only when it changes is the
continent name printed. In the next section, we will see a more complicated
example of control-break programming.

A More Complex Report

Typical business reports have more substance (or at least form) than what
we have seen so far. To illustrate, suppose we want continent subtotals and

SECTION 4.1 GENERATING REPORTS 93

information about the percentage contributed by each country to the total popu
lation and area. We would also like to add a title and more column headers:

Report No. 3 POPULATION, AREA, POPULATION DENS:ITY January 1, 1988

CONT:INENT COUNTRY POPULATION AREA POP. DEN.

Millions Pet. of Thousands Pet. of People per
of People Total of Sq. Mi. Total Sq. Mi.

--------- ---------- ----------
Asia Japan 120 4.3 144 0.6 833.3

:India 746 26.5 1267 4.9 588.8
China 1032 36.6 3705 14.4 278.5
USSR 275 9.8 8649 33.7 31.8

TOTAL for Asia 2173 77.1 13765 53.6

Europe Germany 61 2.2 96 0.4 635.4
England 56 2.0 94 0.4 595.7
Prance 55 2.0 211 0.8 260.7

TOTAL for Europe 172 6.1 401 1.6

North America Mexico 78 2.8 762 3.0 102.4
USA 237 8.4 3615 14.1 65.6
Canada 25 0.9 3852 15.0 6.5

TOTAL for North America 340 12.1 8229 32.0

South America Brazil 134 4.8 3286 12.8 40.8

TOTAL for South America 134 4.8 3286 12.8

GRAND TOTAL 2819 100.0 25681 100.0

We can also generate this report using the prepare-sort-format strategy;
prep3 prepares and sorts the necessary information from the countries file:

prep3 - prepare countries data for form3

BEGIN { FS = "\t"
pass == 1 {

area[$4] += $2
areatot += $2
pop[$4] += $3
poptot += $3

}

pass == 2 {

}

den = 1000*$3/$2
printf("%s:%s:%s:%f:%d:%f:%f:%d:%d\n",

$4, $1, $3, 100*$3/poptot, $2, 100*$2/areatot,
den, pop[$4], area[$4]) I "sort -t: +0 -1 +6rn"

This program needs two passes over the data. In the first pass it accumulates
the area and population of each continent in the arrays area and pop, and also
the totals areatot and poptot. In the second pass it formats the result for

94 REPORTS AND DATABASES CHAPTER 4

each country and pipes it into sort. The two passes are controlled by the value
of the variable pass, which can be changed on the command line between
passes:

awk -f prep3 pass=1 countries pass=2 countries

The output of prep3 consists of lines with 9 colon-separated fields:

continent
country
population
percentage of total population
area
percentage of total area
population density
total population of this country's continent
total area of this country's continent

Note that we've reverted to using tricky arguments to the sort command: the
records are piped into sort, which sorts them alphabetically by the first field
and in reverse numeric order by the seventh field.

The fancy report can be generated by typing the command line

awk -f prep3 pass=1 countries pass=2 countries I awk -f form3

where the program form3 is:

form3 - format countries report number 3

BEGIN
FS = ":"; date = "January 1, 1988"
hfmt = "%36s %8s %12s %7s %12s\n"
tfmt = "%33s %10s %10s %9s\n"
TOTfmt = " TOTAL for %-13s%7d%11.1f%11d%10.1f\n"
printf("%-18s %-40s %19s\n\n", "Report No. 3",

"POPULATION, AREA, POPULATION DENSITY", date)
printf(" %-14s %-14s %-23s %-14s.%-11s\n\n",

"CONTINENT", "COUNTRY", "POPULATION", "AREA", "POP. DEN.")
printf(hfmt, "Millions ", "Pet. of", "Thousands ",

"Pet. of", "People per")
printf(hfmt, "of People", "Total ", "of Sq. Mi.",

"Total ", "Sq. Mi. ")
printf(hfmt, "---------", "-------", "----------",

"-------" "----------")

if ($1 I= prev) { # new continent
if (NR > 1)

total print ()
prev = $1 # first entry for continent
poptot = S8; poppet = S4
areatot = S9; areapct = $6

else { # next entry for continent
$1 = n n

SECTION 4.1 GENERATING REPORTS 95

END

poppet += $4; areapct += $6
}

printf(" %-15s%-10s %6d %10.1f %10d %9.1f %10.1f\n",
$1' $2' $3' $4' $5' $6' $7)

gpop += $3; gpoppct += $4
garea += $5; gareapct += $6

totalprint()
printf(" GRAND TOTAL %20d %10.1f %10d %9.1f\n",

gpop, gpoppct, garea, gareapct)
printf(tfmt, "=====", "======", "=====", "======")

function totalprint() { #print totals for previous continent
printf(tfmt, "----", "-----", "-----", "-----")
printf(TOTfmt, prev, poptot, poppet, areatot, areapct)
printf(tfmt, "====", "=====", "=====", "=====")

In addition to formatting, form3 accumulates and prints subtotals for each con
tinent, and also accumulates the total population, population percentage, area,
and area percentage, which are printed as part of the action associated with the
END pattern.

The form3 program prints a total after all of the entries for each continent
have been seen. But naturally it doesn't know that all the entries have been
seen until a new continent is encountered. Dealing with this "we've gone too
far" situation is the classic example of control-break programming. The solu
tion here is to test each input line before printing, to see whether a total has to
be produced for the previous group; the same test has to be included in the END

action as well, which means it's best to use a function for the computation.
Control breaks are easy enough when there is only one level, but get messier
when there are multiple levels.

As these examples suggest, complex formatting tasks can often be done by
the composition of awk programs. But it remains an appallingly tedious busi
ness to count characters and write print£ statements to make everything come
out properly lined up, and it's a nightmare when something has to be changed.

An alternative is to let a program compute how big things are, then do the
positioning for you. It would be quite feasible to write an awk program to for
mat simple tables for printers; we'll come back to that in a moment. Since we
are using Unix and a typesetter, however, we can use what already exists: the
tbl program, which does table formatting. The program form4 is very similar
to form3, except that it contains no magic numbers for column widths.
Instead, it generates some tbl commands and the table data in columns
separated by tabs; tbl does the rest. (If you are not familiar with tbl, you
can safely ignore the details.)

96 REPORTS AND DATABASES

form4 - format countries data for tbl input

BEGIN
FS ": "; OFS = "\t''; date "January 1, 1988"
print " • TS\ncenter; "

CHAPTER 4

print "1 c s s s r s\nl\nl 1 c s c s c\nl 1 c c c c c."
printf("%s\t%s\t%s\n\n", "Report No. 3",

}

"POPULATION, AREA, POPULATION DENSITY", date)
print "CONTINENT", "COUNTRY", "POPULATION",

"AREA", 11 POP. DEN."
print 1111

,
1111

,
11 Millions", "Pet. of 11

, "Thousands",
"Pet. of", "People per"

print 11
n' n II'

11 0£ People"' "Total n' "of Sq. Mi. II'

"Total", "Sq. Mi. 11

print 11 \t\t \t \t \t \t "
print ".T&\nl 1 n -n ii n-n. 11

}

if ($1 I= prev) { # new continent
if (NR > 1)

totalprint()
prev = $1
poptot = $8; poppet = $4
areatot = $9; areapct = $6

else { # next entry for current continent
$1 = ""
poppet += $4; areapct += $6

print£("%s\t%s\t%d\t%.1f\t%d\t%.1f\t%.1f\n",
$1, $2, $3, $4, $5, $6, $7)

gpop += $3; gpoppct += $4
garea += $5; gareapct += $6

END {
totalprint()

}

print 11 .T&\nl s n n n n n."
print£("GRAND TOTAL\t%d\t%.1f\t%d\t%. 1£\n",

gpop, gpoppct, garea, gareapct)
print II II t

11 = 11
t

11 = 11
t

11 = 11
t

11 = 11
t

11 = 11

print ".TE"

function totalprint() { #print totals for previous continent

}

print 11 .T&\nl s n n n n n."
print II II t II- II t - t - f - t II- 11

print£(" TOTAL for %s\t%d\t%.1f\t%d\t%.1f\n 11
,

prev, poptot, poppet, areatot, areapct)
print , "=", 11 = 11

, "=", 11 =" "="
print 11

• T& \nl 1 n n n n n. "

SECTION 4.1 GENERATING REPORTS 97

When the output from form4 is run through tbl, this table results:

Report No.3 POPULATION, AREA, POPULATION DENSITY January I, I 988

CONTINENT COUNTRY POPULATION AREA POP. DEN.
Millions Pet. of Thousands Pet. of People per

of People Total ofSq. Mi. Total Sq. Mi.

Asia Japan 120 4.3 144 0.6 833.3
India 746 26.5 1267 4.9 588.8
China 1032 36.6 3705 14.4 278.5
USSR 275 9.8 8649 33.7 31.8

TOTAL for Asia 2173 77.1 13765 53.6

Europe Germany 61 2.2 96 0.4 635.4
England 56 2.0 94 0.4 595.7
France 55 2.0 211 0.8 260.7

TOTAL for Europe 172 6.1 401 1.6

North America Mexico 78 2.8 762 3.0 102.4
USA 237 8.4 3615 14.1 65.6
Canada 25 0.9 3852 15.0 6.5

TOTAL for North America 340 12.1 8229 32.0

South America Brazil 134 4.8 3286 12.8 40.8

TOTAL for South America 134 4.8 3286 12.8

GRAND TOTAL 2819 100.0 25681 100.0

We suggested above the possibility of building a program to format tables.
Implementing a program as sophisticated as tbl is too ambitious, but let's
make something smaller: a program that prints items in columns with text items
left-justified on the widest entry in that column, and numeric items right justi
fied and centered on the widest entry. In other words, given a header and the
countries file as input it would print:

COUNTRY AREA POPULATION CONTINENT
USSR 8649 275 Asia
Canada 3852 25 North America
China 3705 1032 Asia
USA 3615 237 North America
Brazil 3286 134 South America
India 1267 746 Asia
Mexico 762 78 North America
France 211 55 Europe
Japan 144 120 Asia
Germany 96 61 Europe
England 94 56 Europe

The program is fairly compact:

98 REPORTS AND DATABASES

table - simple table formatter

BEGIN {

END

FS = "\t"; blanks = sprintf("%100s", " ")
number = ""[+-]?([0-9]+[.]?[0-9]*1 [.][0-9]+)$"

row[NR] = $0
for (i = 1; i <= NF; i++) {

if (Si - number)
nwid[i] = max(nwid[i], length(Si))

wid[i] = max(wid[i], length(Si))

for (r = 1; r <= NR; r++) {
n = split(row[r], d)
for (i = 1; i <= n; i++)

sep = (i < n) ? " "
if (d[i] - number)

"\n"

CHAPTER 4

print£("%" wid[i] "s%s", numjust(i,d[i]), sep)
else

print£("%-" wid[i] "s%s", d[i], sep)

function max(x, y) { return (x > y) ? x : y }

function numjust(n, s) { # position s in field n
returns substr(blanks, 1, int((wid(n]-nwid[n])/2))

The first pass records the data and computes the maximum widths of the
numeric and nonnumeric items for each column. The second pass (in the END
action) prints each item in the proper position. Left-justifying alphabetic items
is easy: we just use wid [i], the maximum width of column i, to build a for
mat string for printf; if the maximum width is 10, for instance, the format
will be %-1 Os for each alphabetic item in column i.

It's a bit more work for numeric items: a numeric item v in column i has to
be right-justified like this:

The number of blanks to the right of v is (wid [i] -nwid [i]) /2, so
numjust concatenates that many blanks to the end of v, then prints it with
%10s (again assuming a width of 10).

SECTION 4.2 PACKAGED QUERIES AND REPORTS 99

Exercise 4-1. Modify form3 and forrp.4 to use a date provided from elsewhere, rather
than having it built in. o
Exercise 4-2. Because of rounding. column entries printed by form3 and form4 do not
always add up to the subtotals shown. How would you correct this? 0

Exercise 4-3. The table formatter assumes that all numbers have the same number of
digits after the decimal point. Modify it to work properly if this assumption is not true.
0

Exercise 4-4. Enhance table to permit a sequence of specification lines that tell how
the subsequent data is to be formatted in each column. (This is how tbl is controlled.)
0

4.2 Packaged Queries and Reports
When a query is asked repeatedly, it makes sense to package it into a com

mand that can be invoked without much typing. Suppose we want to determine
the population, area, and population density of various countries. To determine
this information for Canada, for example, we could type the command (assum
ing a Unix-like shell)

awk '
BEGIN { FS = "\t" }
$1 - /Canada/ {

print£(11 %s:\n'', $1)
printf("\t%d million people\n", $3)
printf("\t%.3£ million sq. mi.\n", $2/1000)
printf{"\t".1f people per sq. mi.\n", 1000•$3/$2)

countries

and get the response

Canada:
25 million people
3.852 million sq. mi.
6.5 people per sq. mi.

Now, if we want to invoke this same command on different countries, we would
get tired of substituting the new country name into the awk program every time
we executed the command. We would find it more convenient to put the pro
gram into an executable file, say info, and answer queries by typing

info Canada
info USA

We can use the technique from Section 2.6 to pass the name of the country into
the program, or we can use the shell itself to include the country name at the
right point:

100 REPORTS AND DATABASES

awk '
info - print information about country
usage: info country-name

BEGIN { FS ; "\t" }
$1 - /'$1'/ {

printf("%s:\n", $1)

CHAPTER 4

printf("\t%d million people\n", $3)
printf("\t%.3f million sq. mi.\n", $2/1000)
printf("\t%.1f people per sq. mi.\n", 1000•$3/$2)

countries

In the beginning of the second line,

$1 - /'$1'/

the first $ 1 refers to the first field in the input file and the second (apparently
quoted) $1 to the country parameter, which is the first argument of the shell
command info. The second $1 is visible only to the shell, which replaces it by
the string following info when this command is invoked. What's happening is
that the shell makes up the awk program by concatenating three strings: two
multiline strings bounded by single quotes, and $1, the argument to info.

Notice that any regular expression can be passed to info; in particular, it is
possible to retrieve information by specifying only a part of a country name or
by specifying several countries at once, as in

info 'CanlUSA'

Exercise 4-5. Revise the info program so the regular expression is passed in through
ARGV instead of by shell manipulations. 0

Form Letters

Awk can be used to generate form letters by substituting values for parame
ters in the text of a form letter:

parameter
values

letter.text

form.gen
form
letter

The text of the form letter is stored in the file letter. text. The text con
tains parameters that will be replaced by a set of parameter values for each
form letter that is generated. For example, the following text uses parameters

SECTION 4.2 PACKAGED QUERIES AND REPORTS 101

#1 through #4, which represent the name of a country, and its population, area,
and population density:

Subject: Demographic Information About #1
From: AWK Demographics, Inc.

In response to your request for information about #1,
our latest research has revealed that its population is #2
million people and its area is #3 million square miles.
This gives #1 a population density of #4 people per
square mile.

From the input values

Canada:25:3.852:6.5

this form letter is generated:

Subject: Demographic Information About Canada
From: AWK Demographics, Inc.

In response to your request for information about Canada,
our latest research has revealed that its population is 25
million people and its area is 3.852 million square miles.
This gives Canada a population density of 6.5 people per
square mile.

The program form. gen is the form-letter generator:

form.gen - generate form letters
input: prototype file letter.text; data lines
output: one form letter per data line

BEGIN {
FS = 11

:
11

while (getline < 11 letter.text 11 > 0) # read form letter
form[++n] = $0

for (i = 1; i <= n; i++) { #read data lines
temp = form[i] # each line generates a letter
for (j = 1; j <= NF; j++)

gsub("#" j, $j, temp)
print temp

The BEGIN action of form. gen reads the text of the form letter from the
file letter. text and stores it in the array form; the remaining action reads
the input values and uses gsub to substitute these input values in place of the
parameters #n in a copy of the stored form letter. Notice how string concatena
tion is used to create the first argument of gsub.

102 REPORTS AND DATABASES CHAPTER 4

4.3 A Relational Database System
In this section, we will describe a simple relational database system centered

around an awk-like query language called q, a data dictionary called the
relfile, and a query processor called qawk that translates q queries into awk
programs.

This system extends awk as a database language in three ways:

Fields are referred to by name rather than by number.

The database can be spread over several files rather than just one.

A sequence of queries can be made interactively.

The advantage of symbolic rather than numeric references to fields is clear -
$area is more natural than $2 - but the advantage of storing a database in
several files may not be as obvious. A multifile database is easier to maintain,
primarily because it is easier to edit a file with a small number of fields than
one that contains all of them. Also, with the database system of this section it
is possible to restructure the database without having to change the programs
that access it. Finally, for simple queries it is more efficient to access a small
file than a large one. On the other hand, we have to be careful to change all
relevant files whenever we add information to the database, so that it remains
consistent.

Up to this point, our database has consisted of a single file named
countries in which each line has four fields, named country, area,
population, and continent. Suppose we add to this database a second file
called capitals where each entry contains the name of a country and its capi
tal city:

USSR Moscow
Canada Ottawa
China Beijing
USA Washington
Brazil Brasilia
India New Delhi
Mexico Mexico City
France Paris
Japan Tokyo
Germany Bonn
England London

As in the countries file, a tab has been used to separate the fields.
From these two files, if we want to print the names of the countries in Asia

along with their populations and capitals, we would have to scan both files and
then piece together the results. For example, this command would work if there
is not too much input data:

SECTION 4.3 A RELATIONAL DATABASE SYSTEM 103

awk ' BEGIN { FS = "\t" }
FILENAME == "capitals 11

cap[$1] :::: $2

FILENAME == 11 Countries" && $4 == 11Asia" {
print $1, $3, cap[$1]

' capitals countries

It would certainly be easier if we could just say something like

$continent - /Asia/ { print $country, $population, $capital

and have a program figure out where the fields are and how to put them
together. This is how we would phrase this query in q, the language that we
will describe shortly.

Natural Joins

It's time for a bit of terminology. In relational databases, a file is called a
table or relation and the columns are called attributes. So we might say that
the capitals table has the attributes country and capital.

A natural join, or join for short, is an operator that combines two tables into
one on the basis of their common attributes. The attributes of the resulting
table are all the attributes of the two tables being joined, with duplicates
removed. If we join the two tables countries and capitals, we get a single
table, let's call it cc, that has the attributes

country, area, population, continent, capital

For each country that appears in both tables, we get a row in the cc table that
has the name of the country, followed by its area, population, continent, and
then its capital:

Brazil
Canada
China
England
France
Germany
India
Japan
Mexico
USA
USSR

3286
3852
3705
94
211
96
1267
144
762
3615
8649

134
25
1032
56
55
61
746
120
78
237
275

South America
North America
Asia
Europe
Europe
Europe
Asia
Asia
North America
North America
Asia

Brasilia
Ottawa
Beijing
London
Paris
Bonn
New Delhi
Tokyo
Mexico City
Washington
Moscow

The way we implement the join operator is to sort the operand tables on
their common attributes and then merge the rows if their values agree on the
common attributes, as in the table above. To answer a query involving attri
butes from several tables, we will first join the tables and then apply the query
to the resulting table. That is, when necessary, we create a temporary file.

104 REPORTS AND OAT ABASES CHAPTER 4

Thus to answer the query

$continent - /Asia/ { print $country, $population, $capital }

we join the countries and capitals tables and apply the query to the
result. The trick is how, in general, to decide which tables to join.

The actual joining operation can be done by the Unix command join, but if
you don't have that available, here is a basic version in awk. It joins two files
on the attribute in the first field of each. Notice that the join of the two tables

A TTl ATT2 ATT3 ATTI ATT4

A w p A 1
B X q A 2
B y r B 3
c z s

is the table

A TTl ATT2 ATT3 ATT4

A w p 1
A w p 2
B X q 3
B y r 3

In other words, join does not assume that the input tables are equally long,
just that they are sorted. It makes an output line for each possible pairing of
matching input fields.

join - join file1 file2 on first field
input: two sorted files, tab-separated fields
output: natural join of lines with common first field

BEGIN {
OFS = sep = "\t"
file2 = ARGV[2]
ARGV[2] = "" # read file1 implicitly, file2 explicitly
eofstat = 1 # end of file status for file2
if ((ng = getgroup()) <= 0)

exit # file2 is empty

while (prefix($0) > prefix(gp[1]))
if ((ng = getgroup()) <= 0)

exit # file2 exhausted
if (prefix($0) == prefix(gp[1]))

for (i = 1; i <= ng; i++)
print SO, suffix(gp[i])

1st attributes in file1
and file2 match
print joined line

SECTION 4.3 A RELATIONAL DATABASE SYSTEM 105

function getgroup() {#put equal prefix group into gp[1 .. ng]
if (getone(file2, gp, 1) <= 0) #end of file

return 0
for (ng = 2; getone(file2, gp, ng) > 0; ng++)

if (prefix(gp[ng]) l= prefix(gp[1]))
unget(gp[ng]) #went too far
return ng-1

}
return ng-1

function getone(f, gp, n) { #get next line in gp[n]
if (eofstat <= 0) # eof or error has occurred

return 0
if (ungot) { # return lookahead line if it exists

gp[n] = ungotline
ungot = 0
return 1

return eofstat

function unget(s)
function prefix(s)
function suffix(s)

(getline gp[n] <f)

ungotline = s; ungot = 1 }
return substr(s, 1, index(s, sep) - 1) }
return substr(s, index(s, sep) + 1) }

The program is called with two arguments, the two input files. Groups of lines
with a common first attribute value are read from the second file. If the prefix
of the line read from the first file matches the common attribute value of some
group, each line of the group gives rise to a joined output line.

The function getgroup puts the next group of lines with a common prefix
into the array gp; it calls getone to get each line, and unget to put a line
back if it is not part of the group. We have localized the extraction of the first
attribute value into the function prefix so it's easy to change.

You should examine the way in which the functions getone and unget
implement a pushback or "un-read" of an input line. Before reading a new line,
getone checks to see if there is a line that has already been read and stored by
unget, and if there is, returns that instead of reading a new one. Pushback is
a different way of dealing with a problem that we encountered earlier, reading
one too many inputs. In the control-break programs early in this chapter, we
delayed processing; here we pretend, through a pair of functions, that we never
even saw the extra input.
Exercise 4-6. This version of join does not check for errors or whether the files are
sorted. Remedy these defects. How much bigger is the program'? 0

Exercise 4-7. Implement a version of join that reads one file entirely into memory,
then does the join. Which is simpler'? o
Exercise 4-8. Modify join so it can join on any field or fields of the input files, and
output any selected subset of fields in any order. o

106 REPORTS AND DATABASES CHAPTER 4

The relflle

In order to ask questions about a database scattered over several tables, we
need to know what is contained in each table. We store this information in a
file called the relfile ("rei" is for relation). The relfile contains the
names of the tables in the database, the attributes they contain, and the rules
for constructing a table if it does not exist. The relfile is a sequence of table
descriptors of the form:

tab/ename:
attribute
attribute

I command

The tablenames and attributes are strings of letters. After the tablename comes
a list of the names of the attributes for that table, each prefixed by blanks or
tabs. Following the attributes is an optional sequence of commands prefixed by
exclamation points that tell how this table is to be constructed. If a table has
no commands, a file with that name containing the data of that table is assumed
to exist already. Such a table is called a base table. Data is entered and
updated in the base tables. A table with a sequence of commands appearing
after its name in the relfile is a derived table. Derived tables are con
structed when they are needed.

We will use the following relfile for our expanded countries database:

countries:
country
area
population
continent

capitals:
country
capital

cc:
country
area
population
continent
capital
!sort countries >temp.countries
!sort capitals >temp.capitals
ljoin temp.countries temp.capitals >cc

This file says that there are two base tables, countries and capitals, and
one derived table cc that is constructed by sorting the base tables into tem
porary files, then joining them. That is, cc is constructed by executing

SECTION 4.3 A RELATIONAL OAT ABASE SYSTEM I 07

sort countries >temp.countries
sort capitals >temp.capitals
join temp.countries temp.capitals >cc

A relfile often includes a universal relation, a table that contains all the
attributes, as the last table in the relfile. This ensures that there is one
table that contains any combination of attributes. The table cc is a universal
relation for the countries-capitals database.

A good design for a complex database should take into account the kinds of
queries that are likely to be asked and the dependencies that exist among the
attributes, but the small databases for which q is likely to be fast enough, with
only a few tables, are unlikely to uncover subtleties in relfile design.

q, an awk-llke query language

Our query language q consists of single-line awk programs with attribute
names in place of field names. The query processor qawk answers a query as
follows:

1. It determines the set of attributes in the query.

2. Starting from the beginning of the relfile, it finds the first table whose
attributes include all the attributes in the query. If this table is a base table,
it uses that table as the input for the query. If the table is a derived table, it
constructs the derived table and uses it as the input. (This means that every
combination of attributes that might appear in a query must also appear in
either a base or derived table in the relfile.)

3. It transforms the q query into an awk program by replacing the symbolic
field references by the appropriate numeric field references. This program is
then applied to the table determined in step (2).

The q query

$continent - /Asia/ { print Scountry, $population }

mentions the attributes continent, country, and population, all of which
are included in the attributes of the first table countries. The query proces
sor translates this query into the program

$4 - /Asia/ { print $1, $3 }

which it applies to the countries file.
The q query

{ print Scountry, $population, Scapital }

contains the attributes country, population, and capital, all of which are
included only in the derived table cc. The query processor therefore constructs
the derived table cc using the commands listed in the relfile and translates
this query into the program

108 REPORTS AND DATABASES CHAPTER 4

{ print $1, $3, $5 }

which it applies to the freshly constructed cc file.
We have been using the word "query," but it's certainly possible to use

qawk to compute as well, as in this computation of the average area:

{ area += $area }; END { print area/NR }

qawk, a q-to-awk translator

We conclude this chapter with the implementation of qawk, the processor
that translates q queries into awk programs.

First, qawk reads the relfile and collects the table names into the array
relname. It collects any commands needed to construct the i-th table and
stores them into the array cmd beginning at location cmd[i, 1]. It also collects
the attributes of each table into the two-dimensional array attr; the entry
attr [i ,a] holds the index of the attribute named a in the i-th table.

Second, qawk reads a query and determines which attributes it uses; these
are all the strings of the form $name in the query. Using the subset function,
it determines T;, the first table whose attributes include all of the attributes
present in the query. It substitutes the indexes of these attributes into the origi
nal query to generate an awk program, issues whatever commands are needed to
create T;, then executes the newly generated awk program with T; as input.

The second step is repeated for each subsequent query. The following
diagram outlines the behavior of qawk:

q query

relfile ____, qa~k--1 ----,~
awk program input T1

answer

Here is the implementation of qawk:

SECTION 4.3 A RELATIONAL DATABASE SYSTEM

qawk - awk relational database query processor

BEGIN
1.1

readrel("relfile")
doquery($0) }

function readrel(f)
while (getline <f > 0) # parse relfile

if ($0 - /A(A-Za-z]+ *:/) { # name:

109

gsub(/[AA-Za-z]+/, 1111
, $0) #remove all but name

relname[++nrel] = SO
else if ($0- /A[\t]*l/) # !command ...

cmd[nrel, ++ncmd[nrel]] substr($0,index(SO,"I")+1)
else if ($0 - /A[\t]*[A-Za-z]+[\t]*$/) # attribute

attr[nrei, $1] ; ++nattr[nrel]
else if (SO 1- /A[\t]*$/) #not white space

print 11 bad line in relfile: 11
, $0

function doquery(s, i,j) {
for (i in qattr) # clean up for next query

delete qattr[i]
query = s # put Snames in query into qattr, without $
while (match(s, /\$(A-Za-z]+/)) {

qattr[substr(s, RSTART+1, RLENGTH-1)] = 1
s = substr(s, RSTART+RLENGTH+1)

for (i = 1; i <= nrel && lsubset(qattr, attr, i);)
i++

if (i > nrel) # didn't find a table with all attributes
missing(qattr)

else { # table i contains attributes in query
for (j in qattr) #create awk program

gsub("\\$" j, "$" attr[i,j], query)
for (j = 1; j <= ncmd[i]; j++) #create table i

if (system(cmd[i, j]) I= 0) {
print "command failed, query skipped\n 11

, cmd[i,j]
return

awkcmd = sprintf("awk -F'\t' '%s' %s", query, relname(i])
printf("query: %s\n", awkcmd) #for debugging
system(awkcmd)

function subset(q, a, r, i) { # is q a subset of a[r]?
for (i in q)

if (I ((r, i) in a))
return 0

return 1

function missing(x, i) {
print "no table contains all of the following attributes: 11

for (i in x)
print i

110 REPORTS AND DATABASES CHAPTER 4

Exercise 4-9. If your operating system doesn't support awk's system function, modify
qawk to write the appropriate sequence of commands in a file or files that can be exe
cuted separately. o
Exercise 4-10. As it constructs a derived table, qawk calls system once for each com
mand. Modify qawk to collect all of the commands for building a table into one string
and to execute them with a single call to system. o
Exercise 4-11. Modify qawk to check whether a derived file that is going to be used as
input has already been computed. If this file has been computed and the base files from
which it was derived have not been modified since, then we can use the derived file
without recomputing it. Look at the program make presented in Chapter 7. o
Exercise 4-12. Provide a way to enter and edit multiline queries. Multiline queries can
be collected with minimal changes to qawk. One possibility for editing is a way to
invoke your favorite text editor; another is to write a very simple editor in awk itself. o

4.4 Summary
In this chapter we have tried to illustrate how to use awk to access and print

information in an organized fashion, in contrast to the more typical ad hoc uses
of Chapter 3.

For generating reports, a "divide-and-conquer" strategy is often best: prepare
the data in one program, sort if necessary, then format with a second program.
Control breaks can be handled either by looking behind, or, often more
elegantly, by an input pushback mechanism. (They can also sometimes be done
by a pipeline too, although we didn't show that in this chapter.) For the details
of formatting, a good alternative to counting characters by hand is to use some
program that does all the mechanical parts.

Although awk is not a tool for production databases, it is quite reasonable
for small personal databases, and it also serves well for illustrating some of the
fundamental notions. The qawk processor is an attempt to demonstrate both of
these aspects.

Bibliographic Notes

There are many good books on databases; you might try J. D. Ullman's
Principles of Database Systems (Computer Science Press, 1986).

5 PROCESSING WORDS

The programs in this chapter share a common theme: the manipulation of
text. The examples include programs that generate random words and sen
tences, that carry on limited dialogues with the user, and that do text process
ing. Most are toys, of value mainly as illustrations, but some of the document
preparation programs are in regular use.

5.1 Random Text Generation
Programs that generate random data have many uses. Such programs can

be created using the built-in function rand, which returns a pseudo-random
number each time it is called. The rand function starts generating random
numbers from the same seed each time a program using it is invoked, so if you
want a different sequence each time, you must call srand () once, which will
initialize rand with a seed computed from the current time.

Random Choices

Each time it is called, rand returns a random floating point number greater
than or equal to 0 and less than 1, but often what is wanted is a random integer
between 1 and n. That's easy to compute from rand:

randint - return random integer x, 1 <= x <= n

function randint(n) {
return int(n *rand()) + 1

randint (n) scales the floating point number produced by rand so it is at
least 0 and less than n, truncates the fractional part to make an integer between
0 and n-1, then adds 1.

We can use randint to select random letters like this:

111

112 PROCESSING WORDS CHAPTER 5

randlet - generate random lower-case letter

function randlet() {
return substr("abcdefghijklmnopqrstuvwxyz", randint(26), 1)

Using randint, it's also easy to print a single random element from an
array of n items x[1], x[2], ... , x[n]:

print x[randint(n)]

A more interesting problem, however, is to print several random entries from the
array in the original order. For example, if the elements of x are in increasing
order, the random sample also ~as to be in order.

The function choose prints k random elements in order from the first n
elements of an array A.

#choose- print in order k random elements from A[1] •. A[n]

function choose(A, k, n, i)
for (i = 1; n > 0; i++)

if (rand() < k/n--)
print A[i]
k--

In the body of the function, k is the number of entries that still need to be
printed, and n is the number of array elements yet to be examined. The deci
sion whether to print the i-th element is determined by the test rand () < k/n;
each time an element is printed, k is decreased, and each time the test is made,
n is decreased.
Exercise 5-1. Test rand to see how random its output really is. D

Exercise 5-2. Write a program to generate k distinct random integers between 1 and n
in time proportional to k. D

Exercise 5-3. Write a program to generate random bridge hands. D

Cliche Generation

Our next example is a cliche generator, which creates new cliches out of old
ones. The input is a set of sentences like

A rolling stone:gathers no moss.
History:repeats itself.
He who lives by the sword:shall die by the sword.
A jack of all trades:is master of none.
Nature:abhors a vacuum.
Every man:has a price.
All's well that:ends well.

where a colon separates subject from predicate. Our cliche program combines a

SECTION 5.1 RANDOM TEXT GENERATION 113

random subject with a random predicate; with luck it produces the occasional
mildly amusing aphorism:

A rolling stone repeats itself.
History abhors a vacuum.
Nature repeats itself.
All's well that gathers no moss.
He who lives by the sword has a price.

The code is straightforward:

cliche - generate an endless stream of cliches
input: lines of form subject:predicate
output: lines of random subject and random predicate

BEGIN { FS = ":" }
{ x[NR] = $1; y[NR] = $2 }

END { for (;;)print x[randint(NR)], y[randint(NR)] }

function randint(n) {return int(n *rand()) + 1 }

Don't forget that this program is intentionally an infinite loop.

Random Sentences

A context-free grammar is a set of rules that defines how to generate or
analyze a set of sentences. Each rule, called a production, has the form

A-BCD ...

The meaning of this production is that any A can be "rewritten" as B CD
The symbol on the left-hand side, A, is called a nonterminal, because it can be
expanded further. The symbols on the right-hand side can be nonterminals
(including more A's) or terminals, so called because they do not get expanded.
There can be several rules with the same left side; terminals and nonterminals
can be repeated in right sides.

In Chapter 6 we will show a grammar for a part of awk itself, and use that
to write a parser that analyzes awk programs. In this chapter, however, our
interest is in generation, not analysis. For example, here is a grammar for sen
tences like "the boy walks slowly" and "the girl runs very very quickly."

Sentence -> Nounphrase Verbphrase
Nounphrase -> the boy
Nounphrase -> the girl
Verbphrase -> Verb Modlist Adverb
Verb -> runs
Verb -> walks
Modlist ->
Modlist -> very Modlist
Adverb -> quickly
Adverb -> slowly

114 PROCESSiNG WORDS CHAPTER 5

The productions generate sentences for nonterminals as follows. Suppose
Sentence is the starting nonterminal. Choose a production with that nonter
minal on the left-hand side:

Sentence -> Nounphrase Verbphrase

Next pick any nonterminal from the right side, for example, Nounphrase, and
rewrite it with any one of the productions for which it is the left side:

Sentence -> Nounphrase Verbphrase
-> the boy Verbphrase

Now pick another nonterminal from the resulting right side (this time only
Verbphrase remains) and rewrite it by one of its productions:

Sentence -> Nounphrase Verbphrase
-> the boy Verbphrase
-> the boy Verb Modlist Adverb

Continue rewriting this way until no more nonterminals remain:

Sentence -> Nounphrase Verbphrase
-> the boy Verbphrase
-> the boy Verb Modlist Adverb
-> the boy walks very Modlist Adverb
-> the boy walks very Adverb
-> the boy walks very quickly

The result is a sentence for the starting nonterminal. This derivation process is
the opposite of the sentence-diagraming procedure taught in elementary school:
rather than combining an adverb and a verb into a verb phrase, we are expand
ing a verb phrase into a verb and an adverb.

The productions for Modlist are interesting. One rule says to replace
Modlist by very Modlist; each time we do this, the sentence gets longer.
Fortunately, this potentially infinite process terminates as soon as we replace
Modlist by the other possibility, which is the null string.

We will now present a program to generate sentences in a grammar, starting
from any specified nonterminal. The program reads the grammar from a file
and records the number of times each left-hand side occurs, plus the number of
right-hand sides it has, and the components of each. Thereafter, whenever a
nonterminal is typed, a random sentence for that nonterminal is generated.

The data structure created by this program uses three arrays to store the
grammar: lhs [A] gives the number of productions for the nonterminal A,

rhscnt [A, i] gives the number of symbols on the right-hand side of the i-th
production for A, and rhslist[A, i, j] contains the j-th symbol in the i-th
right-hand side for A. For our grammar, these arrays contain:

SECTION 5.1 RANDOM TEXT GENERATION

lhs: rhscnt: rhslist:

Sentence§3
Nounphrase 2

Verbphrase I

etc.

Sentence,l ;
Nounphrase, 1 2

Nounphrase,2 2

Verbphrase, 1 3

etc.

The program itself is this:

Sentence, 1,1

Sentence, 1 ,2

Nounphrase, 1,1

Nounphrase, 1 ,2

Nounphrase,2, 1

Nounphrase,2,2

Verbphrase, 1, 1

Verbphrase, 1 ,2

Verbphrase, 1 ,3

sentgen - random sentence generator

Nounphrase

Verbphrase

the

boy
the

girl

Verb

Mod list
Adverb

etc.

input: grammar file; sequence of nonterminals
output: a random sentence for each nonterminal

BEGIN { # read rules from grammar file
while (getline < "grammar" > 0)

if ($2 == "->") {
i = ++lhs($1]
rhscnt($1, i] = NF-2
for (j = 3; j <= NF; j++)

rhslist[S1, i, j-2] = Sj
} else

count lhs
how many in rhs
record them

print "illegal production: n $0
}

{ if ($1 in lhs) { # nonterminal to expand
gen($1)
print£ ("\n n)

} else
print "unknown nonterminal: '' SO

function gen(sym, i, j) {
if (sym in lhs) { # a nonterminal

115

i = int(lhs[sym] *rand()) + 1 #random production
for (j = 1; j <= rhscnt[sym, i]; j++) #expand rhs's

gen(rhslist[sym, i, j])
} else

printf("%s ", sym)

The function gen ("A") generates a sentence for the non terminal A. It calls
itself recursively to expand nonterminals introduced by previous expansions.
Remember to make sure that all the temporary variables used by a recursive

116 PROCESSING WORDS CHAPTERS

function appear in the parameter list of the function declaration. If they do not,
they are global variables, and the program won't work properly.

We chose to use separate arrays for the right-hand-side counts and com
ponents, but it is possible instead to use subscripts to encode different fields,
rather like records or structures in other languages. For example, the array
rhscnt[i, j] could be part of rhslist, as rhslist[i, j, "cnt"].

Exercise 5-4. Write a grammar for generating plausible-sounding text from a field that
appeals to you - business, politics, and computing are all good possibilities. 0

Exercise 5-5. With some grammars, there is an unacceptably high probability that the
sentence-generation program will go into a derivation that just keeps getting longer.
Add a mechanism to limit the length of a derivation. o

Exercise 5-6. Add probabilities to the rules of a grammar, so that some of the rules
associated with a nonterminal are more likely to be chosen than others. 0

Exercise 5-7. Implement a nonrecursive version of the sentence-generation program. 0

5.2 Interactive Text-Manipulation
It is easy to write interactive programs in awk. We'll illustrate the basic

ideas with two programs. The first tests arithmetic skills, and the second tests
knowledge of particular subject areas.

Skills Testing: Arithmetic

The following program ari th (best suited for a very young child) presents
a sequence of addition problems like

7 + 9 = ?

After each problem, the user types an answer. If the answer is right, the user is
praised and presented with another problem. If the answer is wrong, the pro
gram asks for the answer again. If the user provides no answer at all, the right
answer is printed before the next problem is presented.

The program is invoked with one of two command lines:

awk -f arith
awk -f arith n

If there is an argument after ari th on the command line, the argument is used
to limit the maximum size of the numbers in each problem. After this argu
ment has been read, ARGV [1] is reset to "-" so the program will be able to
read the answers from the standard input. If no argument is specified, the max
imum size will be 10.

SECTION 5.2 INTERACTIVE TEXT-MANIPULATION 117

arith - addition drill
usage: awk -f arith optional problem size
output: queries of the form "i + j = ?"

BEGIN {
maxnum = ARGC > 1 ? ARGV[1] : 10 #default size is 10
ARGV[1] = "-" #read standard input subsequently
srand() #reset rand from time of day
do {

n1 = randint(maxnum)
n2 = randint(maxnum)
printf ("%g + %g = ? 11

, n 1 , n2)
while ((input= getline) > 0)

if {$0 == n1 + n2) {
print "Right!"
break

else if ($0 == "")
print n1 + n2
break

else
printf("wrong, try again: ")

} while (input > 0)

function randint(n) {return int(rand()*n)+1 }

Exercise 5-8. Add the other arithmetic operators. Add a way to provide hints for wrong
answers. D

Skills Testing: Quiz

Our second example is a program called quiz that asks questions from some
specified file of questions and answers. For example, consider testing knowledge
of chemical elements. Suppose the question-and-answer file quiz. elems con
tains the symbol, atomic number, and full name for each element, separated by
colons. The first line identifies the fields of subsequent lines:

symbol:number:namelelement
H:1:Hydrogen
He:2:Helium
Li:3:Lithium
Be:4:Beryllium
B:S:Boron
C:6:Carbon
N:7:Nitrogen
0:8:0xygen
F:9:Fluorine
Ne:10:Neon
Na:11:Sodium1Natrium

The program uses the first line to decide which field is the question and which

118 PROCESSING WORDS CHAPTERS

is the answer, then reads the rest of the file into an array, from which it
presents random items and checks answers. After typing the command line

awk -f quiz quiz.elems name symbol

we might engage in a dialogue like this:

Beryllium? B
wrong, try again: Be
Right I
Fluorine?

Notice that alternative answers (for example, sodium or natrium) are easily
handled with regular expressions in the data file.

quiz - present a quiz
usage: awk -f quiz topicfile question-subj answer-subj

BEGIN {
FS = ":"
if (ARGC I= 4)

error("usage: awk -f quiz topicfile question answer")
if (getline <ARGV[1] < 0) #1st line is subj:subj: ••.

error("no such quiz as "ARGV[1])
for Cq = 1; q <= NF; q++)

if ($q- ARGV[2])
break

for (a = 1; a <= NF; a++)
if ($a - ARGV[3])

break
if (q > NF II a> NF II q ==a)

error("valid subjects are " SO)
while (getline <ARGV[1] > 0) # load the quiz

qa[++nq] = SO
ARGC = 2; ARGV[1] = "-" #now read standard input
srand()
do {

split(qa[int(rand()*nq + 1)], x)
print£ ("%s? ", x[q])
while ((input= getline) > 0)

if (SO - "A(" x[a] ")$") {.
print "Right!"
break

else if (SO == "")
print x[a]
break

else
printf("wrong, try again: ")

} while (input > 0)

function error(s) { printf("error: %s\n", s); exit }

SECTION 5.3 TEXT PROCESSING 119

We have to surround the regular expression for the right answer with " and $;

without this, any matching substring of the right answer would also be accepted
(so N would match Ne and Na as well as N).

Exercise 5-9. Modify quiz so that it does not present any question more than once. D

5.3 Text Processing
Because of its string manipulation capabilities, awk is useful for tasks that

arise in text processing and document preparation. As examples, this section
contains programs for counting words, formatting text. maintaining cross
references, making KWIC indexes, and preparing indexes.

Word Counts

In Chapter 1, we presented a program to count the number of lines, words,
and characters in a file, where a word was defined as any contiguous sequence
of nonblank, nontab characters. A related problem is to count the number of
times each different word appears in a document. One way to solve this prob
lem is to isolate the words, sort them to bring identical words together, and then
count occurrences of each word with a control-break program.

Another way, well suited to awk, is to isolate the words and aggregate the
count for each word in an associative array. To do this properly, we have to
decide what a word really is. In the following program, a word is a field with
the punctuation removed, so that, for example, "word" and "word;" and
" (word)" are all counted in the entry for word. The END action prints the
word frequencies, sorted in decreasing order.

wordfreq - print number of occurrences of each word
input: text
output: number-word pairs sorted by number

gsub (I [• , : ; I ? () { }] 1, 11 11
)

for (i = 1; i <= NF; i++)
count[$i]++

END for (w in count)

remove punctuation

print count[w], w l "sort -rn11

}

The top ten words for a draft of this chapter:

312 the
92 and

152 a
72 in

126 of
71 The

121 is
59 at

110 to
54 that

Exercise 5-10. Modify the word-counting program to fold upper and lower case
together, so that the and The are counted together. 0

Exercise 5-11. Write a program to count the number of sentences in a document and

120 PROCESSING WORDS CHAPTER 5

their lengths. 0

Exercise 5-12. Write the control-break program to count words. How does its perfor
mance compare with wordfreq? o

Text Formatting

The program fmt formats its input into lines that are at most 60 characters
long, by moving words to fill each line as much as possible. Blank lines cause
paragraph breaks; otherwise, there are no commands. It's useful for formatting
text that was originally created without thought to line length.

fmt - format
input: text
output: text formatted into lines of <= 60 characters

1.1 for (i = 1; i <= NF; i++) addword($i)
/"$/ printline(); print " 11

}

END printline() }

function addword(w) {
if (length(line) + length(w) > 60)

printline ()
line = line 11 11 w

function printline() {
if (length(line) > 0) {

print substr(line, 2)
line = 1111

removes leading blank

Exercise 5-13. Modify fmt to align the right margin of the text it prints. O

Exercise 5-14. Enhance fmt to infer the proper format of a document by recognizing
probable titles, headings, lists, etc. Rather than formatting, it could generate formatting
commands for a formatter like troff or TEX. 0

Maintaining Cross-References in Manuscripts

A common problem in document preparation is creating a consistent set of
names or numbers for items like bibliographic citations, figures, tables, exam
ples, and so on. Some text formatters help out with this task, but most expect
you to do it yourself. Our next example is a technique for numbering cross
references. It's quite useful for documents like technical papers or books.

As the document is being written, the author creates and uses symbolic
names for the various items that will be cross-referenced. Because the names
are symbolic, items can be added, deleted, and rearranged without having to
change any existing names. Two programs create the version in which the sym
bolic names are replaced by suitable numbers. Here is a sample document

SECTION 5.3 TEXT PROCESSING 121

containing symbolic names for two bibliographic citations and one figure:

.#Fig quotes
Figure-_quotes_ gives two brief quotations from famous books.

Figure _quotes_:

.#Bib alice
" ..• -'and what is the use of a book,' thought Alice,
'without pictures or conversations?'" [_alice_]

.#Bib huck
" •.. -if I 7 d a knowed what a trouble it was to make a book
I wouldn't a tackled it and ain't ageing to no more." [_huck_]

[alice] Carroll, L., Alice's Adventures in Wonderland,
- Macmillan, 1865.

[huck] Twain, M., Adventures of Huckleberry Finn,
- Webster & Co., 1885.

Each symbolic name is defined by a line of the form

.#Category SymbolicName_

Such a definition can appear anywhere in the document, and there can be as
many different categories as the author wants. Throughout the document an
item is referred to by its symbolic name. We have chosen symbolic names that
begin and end with an underscore, but any names can be used as long as they
can be separated from other text. (Item names must all be distinct, even if in
different categories.) The names • #Fig and . #Bib begin with a period so
they will be ignored by the troff formatter in case the document is printed
without resolving the cross-references; with a different formatter, a different
convention may be required.

The conversion creates a new version of the document in which the defini
tions are removed and each symbolic name is replaced by a number. In each
category the numbers start at one and go up sequentially in the order in which
the definitions for that category appear in the original document.

The conversion is done by passing the document through two programs.
This division of labor is another instance of a powerful general technique: the
first program creates a second program to do the rest of the job. In this case,
the first program, called xref, scans the document and creates the second pro
gram, called xref . temp, that does the actual conversion. If the original ver
sion of the manuscript is in the file document, the version with the numeric
references is created by typing:

awk -f xref document >xref.temp
awk -f xref.temp document

The output of the second program can be directed to a printer or text formatter.

122 PROCESSING WORDS CHAPTER 5

The result for our sample above:

Figure 1 gives two brief quotations from famous books.

Figure 1:

" 'and what is the use of a book,' thought Alice,
'without pictures or conversations?"' [1]

" ••• if I'd a knowed what a trouble it was to make a book
I wouldn't a tackled it and ain't agoing to no more." [2]

[1] Carroll, L., Alice's Adventures in Wonderland,
Macmillan, 1865.

[2] Twain, M., Adventures of Huckleberry Finn,
Webster & Co., 1885.

The xref program searches the document for lines beginning with " • #"; for
each such definition it increments a counter in the array count for items of
that category and prints a gsub statement.

xref - create numeric values for symbolic names
input: text with definitions for symbolic names
output: awk program to replace symbolic names by numbers

/"'\.#/ { printf("{ gsub(/%s/, \"%d\") }\n", $2, ++count[$1]) }
END { printf(" I/"[.]#/\n") }

The output of xref on the file above is the second program, xref . temp:

{ gsub(/ quotes I, "1") }
{ gsub(/-alice /, "1") }
{ gsub(/-huck /, "2") }
I/"[.]#/- -

The gsub's globally substitute numbers for the symbolic names; the last state
ment deletes the definitions by not printing lines that begin with • #.

Exercise S-1 S. What might happen if the trailing underscore were omitted from a sym
bolic name? 0

Exercise 5-16. Modify xref to detect multiple definitions of a symbolic name. 0

Exercise 5-17. Modify xref to create editing commands for your favorite text or
stream editor (e.g., sed) instead of creating awk commands. What effect does this have
on performance? o
Exercise S-18. How could you modify xref to make only a single pass over the input?
What restrictions on placement of definitions does this imply? o

Making a KWIC Index

A Keyword-In-Context or KWIC index is an index that shows each word in
the context of the line it is found in; it provides essentially the same information

SECTION 5.3 TEXT PROCESSING 123

as a concordance, although in a different format. Consider the three sentences

All's well that ends well.
Nature abhors a vacuum.
Every man has a price.

Here is a KWIC index for these sentences:

Every man has
Nature abhors

Nature

All's well that

Every man
Every

Every man has a
All's well

Nature abhors a
All's

All's well that ends

a price.
a vacuum.
abhors a vacuum.
All's well that ends well.
ends well.
Every man has a price.
has a price.
man has a price.
Nature abhors a vacuum.
price.
that ends well.
vacuum.
well that ends well.
well.

The problem of constructing a KWIC index has an interesting history in the
field of software engineering. It was proposed as a design exercise by Parnas in
1972; he presented a solution based on a single program. The Unix command
ptx, which does the same job in much the same way, is about 500 lines of C.

The convenience of Unix pipelines suggests a three-step solution: a first pro
gram generates rotations of each input line so that each word in turn is at the
front, a sort puts them in order, and another program unrotates. This forms the
basis of the version in Software Tools, which required about 70 lines of Ratfor
(a structured Fortran dialect), excluding the sort.

This method is even easier with awk; it can be done by a pair of short awk
programs with a sort between them:

awk '
kwic - generate kwic index

{ print SO
for (i = length($0); i > 0; i--) #compute length only once

if (substr(SO,i,1) == " ")

} , I
sort -£
awk '

prefix space suffix ==> suffix tab prefix
print substr(SO,i+1) "\t" substr(S0,1,i-1)

BEGIN { FS = "\t"; WID = 30 }

} ,

{ print£("%" WID "s %s\n", substr(S2,length($2)-WID+1),
substr(S1,1,WID))

The first program prints a copy of each input line. It also prints an output line

124 PROCESSING WORDS CHAPTER 5

for every blank within each input line; the output consists of the part of the
input line after the blank, followed by a tab, followed by the part before the
blank.

All output lines are then piped into the Unix command sort -f which sorts
them, "folding" upper and lower-case letters together, so that, for example,
Jack and jack will appear adjacent.

From the output of the sort command, the second awk program recon
structs the input lines, appropriately formatted. It prints a portion of the part
after the tab, followed by a blank, followed by a portion of the part in front of
the tab.

Exercise 5-19. Add a "stop list" to kwic: a set of words like "a" and "the" that are
not to be taken as keywords. 0

Exercise 5-20. Fix kwic to show as much as possible of lines, by wrapping around at
the ends rather than truncating. o

Exercise 5-21. Write a program to make a concordance instead of a KWIC index: for
each significant word, show all the sentences or phrases where the word appears. o

Making Indexes

One task that accompanies writing a major document like a book or a
manual is preparing an index. There are two parts to this job. The first is
deciding on the terms to be indexed; this is demanding intellectual work if done
well, and not very susceptible to mechanization. The other part really is
mechanical: producing, from a list of index terms and page numbers, a properly
alphabetized and formatted index, like the one at the back of this book.

In the remainder of this section, we are going to use awk and the sort com
mand to build the core of an indexer (whose slightly bigger sibling was used to
create the index of this book). The basic idea is similar to what was used in the
KWIC index program: divide and conquer. The job is broken down into a
sequence of easy pieces, each based on a one-line sort or a short awk program.
Since the pieces are tiny and separate, they can be adapted or augmented with
others quite easily, to satisfy more complicated indexing requirements.

These programs contain a number of details that are specific to the troff
formatter, which we used to typeset this book. These details would change if
the programs were to be used with another formatter, such as TEX or Scribe,
but the basic structure will be the same.

We indexed the book by inserting formatting commands into the text. When
the text is run through troff, these commands cause index terms and page
numbers to be collected in a file. This produces a sequence of lines like the fol
lowing, which is the raw material for the index-preparation programs (a single
tab separates the number from the index term):

SECTION 5.3

[FS] variable 35
[FS] variable 36
arithmetic operators 36
coercion rules 44
string comparison 44
numeric comparison 44
arithmetic operators 44
coercion-to number 45
coercion-to string 45
[if]-[else] statement 47
control-flow statements 48
[FS] variable 52

The intent is that an index term like

string comparison 44

should ultimately appear in the index in two forms:

string comparison 44
comparison, string 44

TEXT PROCESSING 125

Index terms are normally split and rotated at each blank in the term. The tilde
- is used to prevent splitting:

coercion-to number 45

is not to be indexed under "to."
There are a couple of other frills. Since we use troff, some troff size

and font-change commands are recognized and properly ignored during sorting.
Furthermore, because font changes occur frequently in the index, we use the
shorthand [. ..] to indicate material that should appear in the index in the
constant-width font; for example

[if]-[else] statement

is to be printed as

if-else statement

The indexing process is a composition of six commands:

ix.sort1
ix.collapse
ix.rotate
ix.genkey
ix.sort2
ix.format

sort input by index term, then by page number
collapse number lists for identical terms
generate rotations of index term
generate a sort key to force proper ordering
sort by sort key
generate final output

These commands gradually massage the index-term, page-number pairs into the
final form of the index. For the remainder of this section we will consider these
commands in order.

The initial sort takes the index-term, page-number pairs as input and brings
identical terms together in page-number order:

126 PROCESSING WORDS CHAPTERS

ix.sort1 - sort by index term, then by page number
input/output: lines of the form string tab number
sort by string, then by number; discard duplicates

sort -t'tab' +0 -1 +1n -2 -u

The arguments to the sort command need explanation: -t 'tab' says tab is
the field separator; + 0 -1 says the first sort key is field 1, which is to be sorted
alphabetically; + 1n -2 says the second sort key is field 2, which is to be sorted
numerically; and -u says to discard duplicates. (In Chapter 6, we describe a
sort-generator program that will create these arguments for you.) The output of
ix. sort 1 on the input above is:

[FS] variable 35
[FS] variable 36
[FS] variable 52
[if]-[else] statement 47
arithmetic operators 36
arithmetic operators 44
coercion rules 44
coercion-to number 45
coercion-to string 45
control-flow statements 48
numeric comparison 44
string comparison 44

This output becomes the input to the next program, ix. collapse, which
puts the page numbers for identical terms on a single line, using a variation of
the usual control-break program.

ix.collapse - combine number lists for identical terms
input: string tab num \n string tab num ...
output: string tab num num

BEGIN { FS = OFS = "\t" }
$1 l= prev {

if (NR > 1)
print£ ("\n")

prev = $1
printf("%s\t%s", $1, $2)
next

print£(" %s", $2) }

END if (NR > 1) printf("\n")

The output of ix. collapse is

SECTION 5.3

[FS] variable
[if]-[else] statement
arithmetic operators
coercion rules
coercion-to number
coercion-to string
control-flow statements
numeric comparison
string comparison

35 36 52
47
36 44
44
45
45
48
44
44

TEXT PROCESSING 127

The next program, ix. rotate, produces rotations of the index terms from
this output, for example generating "comparison, string" from "string
comparison." This is much the same computation as in the KWIC index,
although we've written it differently. Notice the assignment expression in the
for loop.

ix.rotate - generate rotations of index terms
input: string tab num num ...
output: rotations of string tab num num ...

BEGIN { FS = OFS = "\t" }
{ print $1, $2 # unrotated form

for (i = 1; (j = index(substr($1, i+1), "")) > 0;)
i += j # find each blank, rotate around it
printf("%s, %s\t%s\n",

substr($1, i+1), substr($1, 1, i-1), $2)

The output from ix. rotate begins

[FS] variable 35 36 52
variable, [FS] 35 36 52
[if]-[else] statement 47
statement, [if]-[else] 47
arithmetic operators 36 44
operators, arithmetic 36 44
coercion rules 44
rules, coercion 44
coercion-to number 45
number, coercion-to 45
coercion-to string 45

The next stage is to sort these rotated index terms. The problem with sort
ing them directly is that there may still be embedded formatting information
like [...] that will interfere with the sort order. So each line is prefixed with a
key that assures the proper order; the key will be stripped off later. The pro
gram ix. genkey creates the key from the index term by removing troff size
and font change commands, which look like \s+n, or \s-n, or \fx, or \f (xx.
It also converts the tildes to blanks, and removes any nonalphanumeric charac
ters other than blank from the sort key.

128 PROCESSING WORDS

ix.genkey - generate sort key to force ordering
input: string tab num num ...
output: sort key tab string tab num num ...

BEGIN { FS = OFS = "\t"

CHAPTER 5

gsub(/-1, " ", $1) #tildes now become blanks
key = $1
remove troff size and font change commands from key
gsub(/\\f. :\\f\(.. :\\s[-+] [0-9]/, "", key)
keep blanks, letters, digits only
gsub(/("'a-zA-Z0-9]+/, "", key)
if (key - /"'[... a-zA-Z]/) # force nonalpha to sort first

key = n It key # by prefixing a blank
print key, $1, $2

The output is now

FS variable [FS] variable 35 36 52
variable FS variable, [FS] 35 36 52
ifelse statement [if]-[else] statement 47
statement ifelse statement, [if]-[else] 47
arithmetic operators arithmetic operators 36 44
operatoxs arithmetic operators, arithmetic 36 44
coercion rules coercion rules 44
rules coercion rules, coercion 44
coercion to number coercion to number 45

The first few lines should clarify the distinction between the sort key and the
actual data.

The second sort puts terms into alphabetical order; as before, the -f option
folds upper and lower case together, and -dis dictionary order.

ix.sort2 - sort by sort key
input/output: sort-key tab string tab num num ...

sort -f -d

This puts items into their final order:

arithmetic operators
coercion rules
coercion to number
coercion to string
comparison numeric
comparison string
controlflow statements
FS variable
ifelse statement
number coercion to

arithmetic operators
coercion rules
coercion to number
coercion to string
comparison, numeric
comparison, string
control-flow statements
[FS] variable
[if]-[else] statement
number, coercion to

36 44
44
45
45
44
44
48
35 36 52
47
45

SECTION 5.3 TEXT PROCESSING 129

The last stage, ix. format, removes the sort key, expands any [. ..] into
troff font-change commands, and precedes each term by a formatting com
mand • XX that can be used by a text formatter to control size, position, etc.
(The actual command sequences are quite specific to troff; you can safely
ignore the details.)

ix.format - remove key, restore size and font commands
input: sort key tab string tab num num
output: troff format, ready to print

BEGIN { FS = 11 \t"

{ gsub(/ I, 11 II $3) t t

gsub(/\[1, 11 \\f(CW 11 , $2)
gsub(/\]1, "\\fP 11

9

print 11.xxn

printf(11 %s %s\n 11
,

The final output begins like this:

.XX

$2)

$2, $3)

arithmetic operators 36, 44
.XX
coercion rules 44
.XX
coercion to number 45

commas between page numbers
set constant-width font
restore previous font
user-definable command
actual index entry

To recapitulate, the indexing process consists of a pipeline of six commands

sh ix. sort 1 I
awk -f ix.collapse
awk -f ix.rotate I
awk -f ix.genkey
sh ix.sort2 I
awk -f ix.format

If these are applied to the input of index-term, page-number pairs at the begin
ning of this section, and formatted, the result looks like this:

arithmetic operators 36, 44
coercion rules 44
coercion to number 45
coercion to string 45
comparison, numeric 44
comparison, string 44
control-flow statements 48
FS variable 35, 36, 52
if-else statement 47
number, coercion to 45
numeric comparison 44

130 PROCESSING WORDS CHAPTER 5

Many enhancements and variations are possible; some of the most useful are
suggested in the exercises. The important lesson, however, is that dividing the
job into a sequence of tiny programs makes the whole task quite simple, and
also makes it easy to adapt to new requirements.

Exercise 5-22. Modify or augment the indexing programs to provide hierarchical
indexes, See and See also terms, and Roman-numeral page numbers. 0

Exercise 5-23. Allow literal [.], -,and %characters in index terms. 0

Exercise 5-24. Attack the problem of creating an index automatically by building tools
that prepare lists of words, phrases, etc. How well does the list of word frequencies pro
duced by wordfreq suggest index terms or topics? 0

5.4 Summary
Awk programs can manipulate text with much the same ease that languages

like C or Pascal manipulate numbers - storage is managed automatically, and
the built-in operators and functions provide many of the necessary services. As
a result, awk is usually good for prototyping, and sometimes it is quite adequate
for production use. The indexing programs are a good example - we used a
version of them to index this book.

Bibliographic Notes

Our quiz program is modeled after the Unix version, originally created by
Doug Mcilroy. The idea for the cliche generator comes from Ron Hardin. Par
nas' paper on KWIC indexes, "On the criteria to be used in decomposing sys
tems into modules," appeared in Communications of the ACM, December,
1972. Jon Bentley provided early versions of the KWIC index program,
described in Programming Pearls in Communications of the ACM, June, 1985.
The program for maintaining cross-references is based on Abo and Sethi,
"Maintaining Cross-References in Manuscripts," CSTR 129, AT&T Bell
Laboratories, Murray Hill, NJ (1986). The programs for constructing indexes
are derived from Bentley and Kernighan, "Tools for Printing Indexes," CSTR
130, AT&T Bell Laboratories, Murray Hill, NJ (1986).

6 LITTLE LANGUAGES

Awk is often used to develop translators for "little languages," that is,
languages for specialized applications. One reason for writing a translator is to
learn how a language processor works. The first example in this chapter is an
assembler that in twenty lines or so shows the essentials of the assembly process.
It is accompanied by an interpreter that executes the assembled programs. The
combination illustrates the rudiments of assembly language and machine archi
tecture. Other examples show the basic operation of a postfix calculator and of
a recursive-descent translator for a subset of awk itself.

Another reason may be to experiment with the syntax or semantics of a
special-purpose language before making a large investment in implementation.
As examples, this chapter describes languages for drawing graphs and for speci
fying sort commands.

A third purpose may be to make a language for practical use, such as one of
the calculators in this chapter.

Language processors are built around this conceptual model:

source target
program ~-~ synthesizer program

The front end, the analyzer, reads the source program and breaks it apart into
'its lexical units: operators, operands, and so on. It parses the source program to
check that it is grammatically correct, and if it is not, issues the appropriate
error messages. Finally, it translates the source program into some intermediate
representation from which the back end, the synthesizer, generates the target
program. The symbol table communicates information collected by the analyzer
about the source program to the synthesizer, which uses it during code genera
tion. Although we have described language processing as a sequence of clearly

131

132 UTILE LANGUAGES CHAPTER 6

distinguishable phases, in practice the boundaries are often blurred and the
phases may be combined.

Awk is useful for creating processors for experimental languages because its
basic operations support many of the tasks involved in language translation.
Analysis can often be handled with field splitting and regular expression pattern
matching. Symbol tables can be managed with associative arrays. Code gen
eration can be done with print£ statements.

In this chapter we will develop several translators to illustrate these points.
In each case, we will do the minimum that will make the point or teach the les
son; embellishments and refinements are left as exercises.

6.1 An Assembler and Interpreter
Our first example of a language processor is an assembler for a hypothetical

computer of the sort often encountered in an introductory course on computer
architecture or systems programming. The computer has a single accumulator,
ten instructions, and a word-addressable memory of 1000 words. We'll assume
that a "word" of machine memory holds five decimal digits; if the word is an
instruction, the first two digits encode the operation and the last three digits are
the address. The assembly-language instructions are shown in Table 6-1.

TABLE 6-1. AssEMBLY-LANGUAGE INSTRUCTIONS

0PCODE INSTRUCTION MEANING

01 get read a number from the input into the accumulator
02 put write the contents of the accumulator to the output
03 ld M load accumulator with contents of memory location M

04 st M store contents of accumulator in location M

05 add M add contents of location M to accumulator
06 sub M subtract contents of location M from accumulator
07 jpos M jump to location M if accumulator is positive
08 jz M jump to location M is accumulator is zero
09 j M jump to location M

10 halt stop execution

const c assembler pseudo-operation to define a constant c

An assembly-language program is a sequence of statements, each consisting
of three fields: label, operation, and operand. Any field may be empty; labels
must begin in column one. A program may also contain comments like those in
awk programs. Here is a sample assembly-language program that prints the
sum of a sequence of integers; the end of the input is marked by a zero.

SECTION 6.1 AN ASSEMBLER AND INTERPRETER 133

print sum of input numbers (terminated by zero)

ld zero # initialize sum to zero
st sum

loop get # read a number
jz done # no more input if number is zero
add sum # add in accumulated sum
st sum # store new value back in sum
j loop # go back and read another number

done ld sum # print sum
put
halt

zero const 0
sum const

The target program resulting from translating this program into machine
language is a sequence of integers that represents the contents of memory when
the target program is ready to be run. For this program, memory looks like
this:

0: 03010 ld zero # initialize sum to zero
1: 04011 st sum
2: 01000 loop get # read a number
3: 08007 jz done # no more input if number is zero
4: 05011 add sum # add in accumulated sum
5: 04011 st sum # store new value back in sum
6: 09002 j loop # go back and read another number
7: 03011 done ld sum # print sum
8: 02000 put
9: 10000 halt

10: 00000 zero canst 0
11: 00000 sum const

The first field is the memory location; the second is the encoded instruction.
Memory location 0 contains the translation of the first instruction of the
assembly-language program, ld zero.

The assembler does its translation in two passes. Pass 1 uses field splitting
to do lexical and syntactic analysis. It reads the assembly-language program,
discards comments, assigns a memory location to each label, and writes an
intermediate representation of operations and operands into a temporary file.
Pass 2 reads the temporary file, converts symbolic operands to the memory loca
tions computed by pass 1, encodes the operations and operands, and puts the
resulting machine-language program into the array mem.

As the other half of the job, we'll build an interpreter that simulates the
behavior of the computer on machine-language programs. The interpreter is a
loop that fetches an instruction from mem, decodes it into an operator and an
operand, and then simulates the instruction. The program counter is kept in the
variable pc.

134 UTILE LANGUAGES CHAPTER 6

asm - assembler and interpreter for simple computer
usage: awk -f asm program-file data-files ••.

BEGIN {
srcfile = ARGV[1]
ARGV[1] = '"' # remaining
tempfile = "asm.temp"

files are data

n = split{"const get put
for {i = 1; i <= n; i++)

ld st add sub jpos jz j halt", x)
create table of op codes

op[x[i]] = i-1

ASSEMBLER PASS
FS = "[\t]+"
while {getline <srcfile > 0) {

sub{/#.•/, "") #strip comments
symtab[$1] = nextmem #remember label location
if {$2 I= "") { # save op, addr if present

print S2 "\t" $3 >tempfile
nextmem++

}
}
close{tempfile)

ASSEMBLER PASS 2
nextmem = 0

0) {
if symbolic addr,
replace by numeric value

while (getline <tempfile >
if ($2 I• /A[0-9]•$/)

$2 = symtab[$2]
mem[nextmem++] = 1000 * op[$1] + $2 # pack into word

INTERPRETER
for {pc = 0; pc >= 0;) {

addr = mem[pc] % 1000
code = int(mem[pc++] I 1000)
if (code -- op["get"]) { getline ace
else if {code -- op["put"]) { print ace }
else if {code -- op["st"]) { mem[addr] = ace }
else if (code -- op["ld"]) { ace = mem[addr] }
else if {code -- op["add"]) { ace += mem[addr] }
else if (code == op["sub"]) { ace -= mem[addr] }
else if (code -- op["jpos"]) { if (ace > 0) pc = addr
else if (code -- op["jz"]) { if (ace == 0) pc = addr
else if (code == op["j"]) { pc = addr }
else if (code -- op["halt"]) { pc = -1 }

else { pc = -1 }

}

The associative array symtab records memory locations for labels. If there is
no label for an input line, symtab [" "] is set.

Labels start in column one; operators are preceded by white space. Pass 1

}
}

SECTION 6.2 A LANGUAGE FOR DRAWING GRAPHS 135

sets the field separator variable FS to the regular expression [\ t] +. This
causes every maximal sequence of blanks and tabs in the current input line to be
a field separator. In particular, leading white space is now treated as a field
separator, so $1 is always the label and $2 is always the operator.

Because the "op code" for const is zero, the single assignment

mem[nextmem++] = 1000 * op[$1] + $2 #pack into word

can be used to store both constants and instructions in pass 2.
Exercise 6-1. Modify asm to print the listing of memory and program shown above. D

Exercise 6-2. Augment the interpreter to print a trace of the instructions as they are
executed. D

Exercise 6-3. To get an idea of scale, add code to handle errors, deal with a richer set of
conditional jumps, etc. How would you handle literal operands like add = 1 instead of
forcing the user to create a cell called one? D

Exercise 6-4. Write a disassembler that converts a raw memory dump into assembly
language. D

Exercise 6-5. Look at a real machine (e.g., the 6502, as found in Apple-11 and Commo
dore, or the 8086 family in the IBM PC and compatibles) and try writing an assembler
for a subset of its instructions. D

6.2 A Language for Drawing Graphs

The lexical and syntactic simplicity of our assembly language made its
analysis easy to do with field splitting. This same simplicity also appears in
some higher-level languages. Our next example is a processor for a prototype
language called graph, for plotting graphs of data. The input is a graph
specification in which each line is a data point or labeling information for the
coordinate axes. Data points are x-y pairs, or y values for which a default
sequence of x values 1, 2, 3, etc., is to be generated. An optional nonnumeric
plotting character can follow either form of data value. Labeling information
consists of a keyword and parameter values:

label caption
range xmin ymin xmax ymax
left ticks t 1 t 2 ...

bottom ticks t 1 t 2 ...

height number
width number

These lines can appear in any order. They are all optional; in particular, there
is no need to specify the range of data values.

The processor scales the data points and produces commands to plot them in
a suitable form. To make the discussion concrete, we will simply print them out
as a 24x80 character array, but it would be easy to produce plotting commands
for some graphics device instead. For example, this input:

136 LITTLE LANGUAGES CHAPTER 6

label Annual Traffic Deaths, USA, 1925-1984
ranqe 1920 5000 1990 60000
left ticks 10000 30000 50000
bottom ticks 1930 1940 1950 1960 1970 1980

1925 21800
1930 31050
1935 36369

1981 51500
1982 46000
1983 44600
1984 46200

produces this output:

50000

30000

10000

•
* *
**

*

•• *** ***
* *

.
•

.
•••

·---------1----------1---------1----------1---------1----------1---------
1930 1940 1950 1960 1970 1980

Annual Traffic Deaths. USA. 1925-1984

The graph processor operates in two phases. The main loop reads the
graph specification and parses it, using patterns to recognize the different types
of statements. The intermediate representation of the graph is stored in various
arrays and variables. From this representation, the END action computes the
range of values if necessary, then draws a frame, the ticks, the label, and the
data points. The output operations have been written as separate functions to
localize changes for specific devices.

This is by far the largest awk program we have seen so far; at one hundred
lines, it's the second largest in the book. In spite of that, the individual pieces
are quite short and simple. It was written in small steps as well, as the design
evolved.

SECTION 6.2 A LANGUAGE FOR ORA WING GRAPHS 137

graph - processor for a graph-drawing language
input: data and specification of a graph
output: data plotted in specified area

BEGIN { #set frame dimensions ...
ht = 24; wid = 80 # height and width
ox = 6; oy = 2 # offset for x and y axes
number= ""(-+]?([0-9]+[.]?[0-9]*1[.][0-9]+)" \

"([eE][-+]?[0-9]+)?$"
}
$1 == "label" { # for bottom

}

sub(/" *label */, "")
botlab = SO
next

$1 == "bottom" && $2 == "ticks" (# ticks for x-axis
for (i = 3; i <= NF; i++) bticks[++nb] = Si
next

}
$1 == "left" && $2 == "ticks" { # ticks for y-axis

for (i = 3; i <= NF; i++) lticks[++nl] = Si
next

}
$1 == "range" # xmin ymin xmax ymax

$3; xmax = $4; ymax = $5

}

xmin = $2; ymin
next

$1 == "height" { ht = $2; next }
$1 == "width" { wid = $2; next }
$1 - number && $2 - number { # pair of numbers

nd++ # count number of data points
x[nd] = $1; y[nd] = $2
ch[nd] = $3 # optional plotting character
next

}

$1 - number && $2 1- number { # single number
nd++ # count number of data points
x[nd] = nd; y[nd] = $1; ch[nd] = $2
next

}
END # draw graph

if (xmin == n n) { # no range was given
xmin = xmax x[1] # so compute it
ymin = ymax y[1]
for (i = 2; i <= nd; i++)

if (x[i] < xmin) xmin x[i]
if (x[i] > xmax) xmax x[i]
if (y[i] < ymi.n) ymin = y[i]
if (y[i] > ymax) ymax = y[i]

}

frame(); ticks(); label(); data(); draw()
}

138 LITTLE LANGUAGES CHAPTER 6

function frame() { # create frame for graph
for (i ox; i < wid; i++) plot(i, oy, n -") # bottom
for (i = ox; i < wid; i++) plot(i, ht-1, n -") # top
for (i = oy; i < ht; i++) plot(ox, i, "In) # left
for (i oy; i < ht; i++) plot (wid-1 , i, " I " > # right

function ticks(i) { # create tick marks for both axes
for (i = 1; i <= nb; i++) {

}

plot(xscale(bticks[i]), oy, "I")
splot(xscale(bticks[i])-1, 1, bticks[i])

for (i = 1; i <= nl; i++) {
plot(ox, yscale(lticks[i]), "-")
splot(O, yscale(lticks[i]), lticks[i])

function label() { #center label under x-axis
splot(int((wid +ox- length(botlab))/2), 0, botlab)

function data(i) { # create data points
for (i = 1; i <= nd; i++)

plot(xscale(x[i]),yscale(y[i]),ch[i]=="" ? "*"

function draw(i, j) { # print graph from array
for (i = ht-1; i >= 0; i--) {

for Ci = 0; j < wid; j++)
print£ ((j, i) in array ? array[j, i] " ")

print£ ("\n")

function xscale(x) { # scale x-value

ch[i 1)

return int((x-xmin)/(xmax-xmin) * (wid-1-ox) +ox+ 0.5)

function yscale(y) { # scale y-value
return int((y-ymin)/(ymax-ymin) * (ht-1-oy) + oy + 0.5)

function plot(x, y, c) { # put character c in array
array[x,y] = c

function splot(x, y, s, i, n) { # put string s in array
n = length(s)
for (i = 0; i < n; i++)

array[x+i, y] = substr(s, i+1, 1)

The graph language falls naturally into the pattern-directed model of com
putation that awk itself supports: the specification statements are keywords with
values. This style is often a good start for any language design; it seems easy
for people to use, and it is certainly easy to process.

Our language graph is a simplified version of the graph-plotting language
grap, which is a preprocessor for the pic picture-drawing language. The same

SECTION 6.2 A LANGUAGE FOR DRAWING GRAPHS 139

data and a description almost identical to that above produces this picture when
run through grap, pic and troff:

...... -· ..
50000- • • • • ... • • • •

-··· • • • • •
30000 - • ...

•
•

10000-

I I I I I I
1930 1940 1950 1960 1970 1980

Annual Traffic Deaths, USA, 1925-1984

Awk is good for designing and experimenting with little languages. If a
design proves suitable, a production version can be recoded in a more efficient
systems language like C. In some cases, the prototype version itself may be
suitable for production use. These situations typically involve sugar-coating or
specializing an existing tool.

A specific instance is the preparation of specialized graphs, where we have
used awk programs to translate simple languages into grap commands. Exam
ples include scatter-plot matrices, dotcharts (a form of histogram), boxplots
(which show mean, quartiles and extremes of a set of observations), and pie
charts.

Exercise 6-6. Modify graph so that the graph can be drawn transposed, that is, with
the x axis running down the page and the y axis across the page. Also add the ability to
specify logarithmic x and y scales. D

Exercise 6-7. Add a command to graph that can be used to cause data to be read from
a file. D

Exercise 6-8. Compute suitable tick locations automatically. (Awk is good for experi
menting with algorithms for this task even if the final implementation will be in another
language.) D

Exercise 6-9. If your system provides some plotting library, extend or modify graph to
generate commands for it. (This is an example of sugar-coating.) D

140 UTILE LANGUAGES CHAPTER 6

6.3 A Sort Generator

The Unix sort command is versatile if you know how to use it. But it's hard
to remember all the options, and numbering fields from zero may be counter to
your intuition. So as another exercise in little-language design, we will develop
a language sortgen to generate sort commands from a more English-like
specification. The sortgen processor generates a sort command but does not
run it - that task is left to the user, who may want to review the command
before invoking it.

The input to sortgen is a sequence of words and phrases describing sort
options like the field separator, the sort keys, and the nature and direction of
comparisons. The goal is to cover the common cases with a forgiving syntax.
For example, given this input:

descending numeric order

the output is

sort -rn

As a more complicated example, with this description:

field separator is :
primary key is field 1

increasing alphabetic
secondary key is field 5

reverse numeric

sortgen produces a sort command equivalent to the first one in Chapter 4:

sort -t':' +0 -1 +4rn -5

The heart of sortgen is a set of rules to translate words and phrases
describing sort options into corresponding flags for the sort command. The rules
are implemented by pattern-action statements in which the patterns are regular
expressions that match the phrases describing sort options; the actions compute
the appropriate flags for the sort command. For instance, any mention of
44Unique" or "discard identical" is taken as a request for the -u option, which
discards duplicate items. Similarly, the field separator character is assumed to
be either a tab or a single character that appears somewhere on a line contain
ing some form of the word "separate."

The hardest part is dealing with multiple sort keys, each of which can span
multiple fields. Here the magic word is 44key," which has to appear in the
input. When it does, one or two isolated numbers are collected as the field
numbers. Each mention of 44key" starts collection of options for a new key.
Per-key options include blank suppression (-b), dictionary order (-d}, folding
of upper and lower case together (-£),numeric order (-n), and reversal (-r).

SECTION 6.3 A SORT GENERATOR

sortgen - generate sort command
input: sequence of lines describing sorting options
output: Unix sort command with appropriate arguments

BEGIN { key 0

/no lnot ln't I print "error: can't do negatives:", SO; ok

rules for global options
{ ok = 0 }

/uniq:discard.•(iden:dupl)/
/separ.•tab:tab.•sep/
/separ/ { for (i = 1; i <= NF;

if (length(Si)

uniq = " -u"; ok = 1 }
sep = "t'\t'"; ok = 1 }
i++)

1)

sep = "t'" Si "'"
ok = 1

1 }

/key/ key++; dokey(); ok 1 } # new key; must come in order

rules for each key

/diet/ dict[key] = "d"; ok = 1 }
/ignore.•(spacelblank)/ blank[key] = "b"; ok = 1 }
/fold: case/ fold[key] = "f"; ok = 1 }
/num/ num[key] = "n"; ok = 1 }
/rev:descendldecreasldownloppos/ rev[key] = "r"; ok = 1 }

141

/forwardlascend:increasluplalpha/ next } #this is sort's default
lok { print "error: can't understand:", $0 }

END # print flags for each key
cmd = "sort" uniq
flag = dict[O] blank[O] fold[O] rev[O] num(O] sep
if (flag) cmd = cmd " -" flag
for (i = 1; i <=key; i++)

if (pos [i] I::: " ") {
flag = pos[i] dict[i] blank[i] fold[i] rev[i] num[i]
if (flag) cmd = cmd " +" flag
if (pos2[i]) cmd = cmd" -" pos2[i]

print cmd

function dokey(i) { # determine position of key
for (i = 1; i <= NF; i++)

if ($i - /~[0-9]+$/) {
pos[key] = Si - 1 # sort uses .0-origin
break

for (i++; i <= NF; i++)
if (Si - /~[0-9]+$/)

pos2[key) = Si
break

}
if (pos[key] == "")

printf("error: invalid key specification: %s\n", SO)
if (pos2[key] == "")

pos2[key] = pos[key] +

142 LITTLE LANGUAGES CHAPTER 6

To avoid dealing with input like udon't discard duplicates" or uno numeric
data," the first pattern of sortgen rejects lines that appear to be phrased
negatively. Subsequent rules deal with the global options, then with those that
apply only to the current key. The program informs the user of any line it was
unable to understand.

This program is still easy to fool, of course, but if one is trying to get the
right answer, not to provoke an error, sortgen is already useful.

Exercise 6-10. Write a version of sortgen that provides access to all the facilities of
the sort command on your system. Detect inconsistent requests, such as sorting numeri
cally and in dictionary order simultaneously. 0

Exercise 6-11. How much more accurate can you make sortgen without making its
input language significantly more formal? 0

Exercise 6-12. Write a program that translates a sort command into an English sen
tence. Run sortgen on its output. 0

6.4 A Reverse-Polish Calculator
Suppose we want a calculator program for balancing a checkbook or evaluat

ing arithmetic expressions. Awk itself is perfectly reasonable for such calcula
tions except that we have to re-run it each time the program changes. We need
a program that will read and evaluate expressions as they are typed.

To avoid writing a parser, we will require the user to write expressions in
reverse-Polish notation. (It's called ureverse" because operators follow their
operands, and uPolish" after the Polish mathematician Jan Lukasiewicz, who
first proposed the notation.) The normal uinfix" expression

(1 + 2) * (3- 4) I 5

is written in reverse Polish as

1 2 + 3 4 - * 5 I

No parentheses are needed - expressions are unambiguous if the number of
operands taken by each operator is known. Reverse-Polish expressions are easy
to parse and evaluate using a stack and, as a consequence, programming
languages like Forth and Postscript, and some pocket calculators, use this nota
tion.

Our first calculator provides nothing more than the ability to evaluate arith
metic expressions written in reverse-Polish notation, with all operators and
operands separated by blanks. If a field is a number, it is pushed onto a stack;
if it is an operator, the proper operation is done to the operands on the top of
the stack. The value at the top of the stack is printed and popped at the end of
each input line.

SECTION 6.4 A REVERSE-POLISH CALCULATOR 143

calc1 - reverse-Polish calculator, version
input: arithmetic expressions in reverse Polish
output: values of expressions

for (i = 1; i <= NF; i++)
if ($i • IA[+-]?([0-9]+[.]?[0-9]*1[.][0-9]+)$1)

stack[++top] = $i
} else if ($i == "+" && top> 1) {

stack[top-1] += stack[top]; top-
} else if ($i == "-" && top > 1) {

stack[top-1] -= stack[top]; top-
else if (Si == "*" && top > 1) {

stack[top-1] *= stack[top]; top-
else if (Si == 11 1 11 && top> 1) {

stack[top-1] I= stack[top]; top-
} else if (Si == IJAII && top > 1) {

stack[top-1] A= stack[top]; top--

}

else {
printf("error: cannot evaluate %s,n", Si)
top = 0
next

if (top== 1)
printf("'t%.8g,n11

, stack[top--])
else if (top> 1) {

printf("error: too many operands,n 11
)

top = 0

For the input

1 2 + 3 4 - * 5 I

calc1 gives the answer -0 .6.
Our second reverse-Polish calculator provides user-defined variables and

access to a handful of arithmetic functions. Variable names consist of a letter
followed by letters or digits; the special syntax var= pops the value on the top of
the stack and assigns it to the variable var. If the input line ends with an
assignment, no value is printed. Thus a typical interaction might look like this
(program output is indented):

0 -1 atan2 pi=
pi

3.1415927
355 113 I X= X

3.1415929
X pi I

1.0000001
2 sqrt

1.4142136

The program is a straightforward extension of the previous one:

144 UTILE LANGUAGES

calc2 - reverse-Polish calculator, version 2
input: expressions in reverse Polish
output: value of each expression

for (i = 1; i <= NF; i++)
if ($i- IA[+-]?([0-9]+[.]?[0-9]*1[.][0-9]+}$/}

stack[++top] = Si
else if (Si == "+" && top > 1) {

stack[top-1] += stack[top]; top-
} else if (Si == "-" && top > 1) {

stack[top-1] -= stack[top]; top-
else if (Si == "*" && top> 1) {

stack[top-1] *= stack[top]; top-
else if (Si == "I" && top > 1) {

stack[top-1] I= stack[top]; top-
else if (Si == "A" && top > 1) {

stack[top-1] A= stack[top]; top-
else if (Si == "sin" && top > 0) {

stack[top] = sin(stack[top])
else if (Si == "cos" &.&. top > 0)

stack[top] = cos(stack[top])
else if (Si == "atan2" && top> 1) {

CHAPTER 6

stack[top-1] = atan2(stack[top-1],stack[top]); top-
else if (Si == "log" && top > 0) {

}

stack[top] = log(stack[top])
else if ($i == "exp" && top > 0)

stack[top] = exp(stack[top])
else if (Si == "sqrt" &&. top > 0) {

stack[top] = sqrt(stack[top])
else if (Si == "int" &.& top > 0)

stack[top] = int(stack[top])
else if (Si in vars) {

stack[++top] = vars[Si]
else if ($i - IA[a-zA-Z][a-zA-Z0-9]*=$/ && top > 0)

vars[substr(Si, 1, length(Si)-1)] = stack[top--]
else {

printf("error: cannot evaluate %s'n", Si)
top = 0
next

if (top == 1 &&. $NF 1- 1'=$1)
printf("'t%.8g'n", stack[top--])

else if (top> 1) {
printf("error: too many operands'n")
top = 0

Exercise 6-13. Add built-in variables for standard values like 1r and e to calc2. Add a
built-in variable for the result of the last input line. Add stack-manipulation operators
to duplicate the top of the stack and to swap the top two items. D

SECTION 6.5 AN INFIX CALCULATOR 145

6.5 An Infix Calculator
So far, the languages we have considered in this chapter have all had a syn

tax that was easy to analyze. Most high-level languages, however, have opera
tors at many different precedence levels, nested structures such as parentheses
and if-then-else statements, and other constructions that require more powerful
parsing techniques than field splitting or regular expression pattern matching.
It is possible to process such languages in awk by writing a full-fledged parser,
as one would in any language. In this section we will construct a program to
evaluate arithmetic expressions in the familiar "infix" notation; this is a useful
precursor to the much larger parser in the next section.

Arithmetic expressions with the operators +, -, *• and I can be described by
a grammar in the same style as the one we used in Chapter 5:

expr

term

factor

term
expr +term
expr- term
factor
term * factor
term I factor
number
(expr)

This grammar captures not only the form of arithmetic expressions but also
the precedences and associativities of the operators. For example, an expr is the
sum or difference of term's, but a term is made up of factor's, which assures
that multiplication and division are dealt with before addition or subtraction.

We can think of the process of parsing as one of diagramming a sentence,
the opposite of the generation process discussed in Chapter 5. For example, the
expression 1 + 2 * 3 is parsed like this:

1 -number- factor - term expr -------
+ ------------------ expr

2 -number- factor - term ---._ /

* term /

3 -number- factor -

To make an infix evaluator, we need a parser for expressions. With a little
effort, the grammar can be used to construct the parser and organize the pro
gram as well. A function is written to process each nonterminal in the gram
mar: the program uses the function expr to process term's separated by plus or
minus signs, the function term to process factor's separated by multiplication
or division signs, and the function factor to recognize numbers and process
parenthesized expr's.

In the following program, each input line is taken as a single expression,

146 UTILE LANGUAGES CHAPTER 6

which is evaluated and printed. We are still requiring that all operators and
operands, including parentheses, be separated by blanks. The variable f points
to the next field to be examined, which is the next operator or operand.

calc3 - infix calculator

NF > 0 {
f = 1
e = expr(}
if (f <= NF} printf("error at %s\n", Sf}
else printf("\t%.8g\n", e)

function expr(e) {
e = term()

#term term [+-] term

while (Sf == "+" :: Sf "-"}
e = S(f++) == "+"? e +term(}

return e
e - term()

function term(e) { # factor factor [*/] factor
e = factor()
while (Sf == "*" :: Sf "/")

e = S(f++) == "*"? e *factor() e I factor()
return e

function factor(e) { # number : (expr)
if (Sf- /A[+-]?([0-9]+[,]?[0-9]*:[,][0-9]+)S/)

return S(f++)
} else if (Sf == "("} {

f++
e = expr()
if (S(f++) I= ")")

printf("error: missing) at %s\n", Sf}
return e

else {
printf("error: expected number or (at %s\n", Sf)
return 0

The construction $ (f++) produces the value of $£, then increments f; it is not
the same as $£++,which increments the value of$£.

Exercise 6-14. Construct a set of inputs to test calc3 thoroughly. 0

Exercise 6-15. Add exponentiation, built-in functions, and variables to the infix calcula
tor calc3. How does the implementation compare to the reverse-Polish version'? 0

Exercise 6-16. Improve the error-handling performance of calc3. O

SECTION 6.6 RECURSIVE-DESCENT PARSING 147

6.6 Recursive-Descent Parsing
In this section, we develop a recursive-descent translator for a small subset of

awk, written in awk itself. The part that deals with arithmetic expressions is
essentially the same as in the previous section. To add some verisimilitude to
the exercise, we have chosen to generate C code as the target program, with
function calls replacing awk's operators. This is partly to illustrate the princi
ples of syntax-directed translation, and partly to suggest a way to create a "C
version" of awk that could run faster and be easier to extend. The general
approach is to replace every arithmetic operator by a function call; for example,
x=y becomes assign(x,y), and x+y becomes eval (11 +" ,x,y). The main
input loop is expressed as a while that calls a function getrec to read each
input line and split it into fields. Thus,

BEGIN X = 0; y = 1 }

$1 > X if (x == y+ 1)
X = 1

NR>

END

y = X * 2
else

print x, z[x]

print $1

print NR

is translated into this C code:

assign(x, num((float)O));
assign(y, num((float)1));
while (getrec()) {

if (eval(">", field(num((float) 1)), x)) {
if (eval("==", x, eval("+", y, num((float)1))))

assign(x, num((float)1));

}

assign(y, eval("*", x, num((float)2)));
else {

print(x, array(z, x));

if (eval(">", NR, num((float)1)))
print(field(num((float)1)));

}
}
print(NR);

A good way to approach the design of the front end of a language processor
is to write down a grammar for the input language. Using the notation of Sec
tion 5.1, our subset of awk has this grammar:

148 UTILE LANGUAGES

program
opt-begin
opt-end
pa-stats
pattern
stat list
stats
stat

opt-else
expr/ist
expr

ident

opt-begin pa-stats opt-end
BEGIN stat list I ""
END stat list I ""
statlist I pattern I pattern statlist
expr
{ stats }
stat stats I " "
print exprlist I
if (expr) stat opt-else I
while (expr) stat I
statlist I
ident = expr
else stat I 1111

expr I expr , expr/ist
number I ident I $expr I (expr) I
expr < expr I expr <= expr I ... I expr > expr I
expr + expr I expr - expr I
expr * expr I expr I expr I expr % expr
name I name [expr 1 I name (exprlist)

The notation "" stands for the null string and I separates alternatives.

CHAPTER 6

The key ingredient in a recursive-descent parser is a set of recursive parsing
routines, each of which is responsible for identifying, in the input, strings gen
erated by a nonterminal in the grammar. Each routine calls in turn upon others
to help out in the task until the terminal level is reached, at which point actual
tokens of input are read and categorized. The recursive, top-down nature of this
method of parsing leads to the name "recursive descent."

The structure of the parsing routines closely matches the grammatical struc
ture of the language. For example, the function for program looks for an
optional BEGIN action, followed by a list of pattern-action statements, followed
by an optional END action.

In our recursive-descent parser, lexical analysis is done by a routine called
advance, which finds the next token and assigns it to the variable tok. Out
put is produced each time a stat is identified; lower-level routines return strings
that are combined into larger units. An attempt has been made to keep the out
put readable by inserting tabs; the proper level of nesting is maintained in the
variable nt.

The program is by no means complete - it does not parse all of a wk, nor
does it generate all of the C code that would be needed even for this subset -
and it is not at all robust. But it does do enough to demonstrate how the whole
thing might be done, and it also shows the strticture of a recursive-descent
translator for a nontrivial fraction of a real language.

SECTION 6.6 RECURSIVE-DESCENT PARSING

awk.parser - recursive-descent translator for part of awk
input: awk program (very restricted subset)
output: C code to implement the awk program

BEGIN {program() }

function advance() { #lexical analyzer; returns next token
if (tok == "(eof)") return "(eof)"
while (length(line) == 0)

if (getline line == 0)
return tok ~ "(eof)"

sub(/A['t]+/, "", line) #remove white space
if (match(line, /A[A-Za-z][A-Za-z 0-9]•/) :: # identifier

match(line, /A-?([0-9]+,.?[0-9]•:'.[0-9]+)/) :: #number
match(line, /A(<:<=:==: 1=:>=:>)/) ::
match(line, /A./)) {

tok = substr(line, 1, RLENGTH)
line = substr(line, RLENGTH+1)
return tok

relational
everything else

error("line " NR " incomprehensible at " line)

function gen(s) # print s with nt leading tabs
printf("%s%s'n", substr("'t't't't't't't't't", 1, nt), s)

function eat(s) { # read next token if s == tok

}

if (tok I= s) error("line " NF ": saw " tok ", expected " s)
advance()

function nl() I absorb newlines and semicolons
while (tok == "'n" :: tok == ";")

advance()

function error(s) { print "Error: " s

function program() {
advance()

"cat 1>~2"; exit 1 }

if (tok == "BEGIN") { eat("BEGIN"); statlist()
pastats()
if (tok "END") { eat("END"); statlist() }
if (tok I= "(eof)") error("proqram continues after END")

function pastats() {
gen("while (getrec()) {"); nt++
while (tok I= "END"~~ tok I= "(eof)") pastat()
nt--; gen("}")

function pastat() {
if (tok == "{")

statlist()

pattern-action statement
action only

else { # pattern-action
qen("if ("pattern() ") {"); nt++
if (tok "{") statlist()
else # default action is print SO

qen("print(field(O));")
nt--; gen("}")

149

150 UTILE LANGUAGES CHAPTER 6

function pattern() {return expr() }

function statlist()
eat("{"); nl(); while (tok I="}") stat(); eat("}"); nl()

function stat() {
if (tok =="print") { eat("print"); qen("print(" exprlist() ");") }
else if (tok "if") if stat()
else if (tok =="while") whilestat()
else if (tok == "{") statlist()
else qen(simplestat() ";")
nl()

function ifstat() {
eat("if"); eat("("); qen("if (" expr() ") {"); eat(")"); nl(); nt++
stat()
if (tok == "else") { #optional else

eat("else")
nl(); nt--; qen("} else {"); nt++
stat()

nt--; qen("}")

function whilestat() {
eat("while"); eat("("); qen("while (" expr() ") C'); eat(")"); nl()
nt++; stat(); nt--; qen("}")

function simplestat(lhs) { # ident expr
lhs = ident ()
if (tok == "=") {

eat("=")
return "assign(" lhs ", "expr() ")"

else return lhs

name(exprlist)

function exprlist(
e = expr()

n, e) { # expr, expr, ...
has to be at least one

for (n = 1; tok == ","; n++) {
advance()
e = e ", " expr()

return e

function expr(e) # rel rel relop rel
e = rel()
while (tok - /<1<=1==1 1=1>=1>/)

op = tok
advance()
e = sprintf("eval(\""s\", "s, "s)", op, e, rel())

return e

SECTION 6.6 RECURSIVE·DESCENT PARSING

function rel(op, e) { # term term [+-] term
e = term()
while (tok == "+" I I tok "-")

op = tok
advance()
e = sprintf("eval(\""s\", "s, "s)", op, e, term())

return e

function term(op, e) { # fact I fact [*/"] fact
e = fact()
while (tok == 11 *" II tok "/" II tok == 11

"") {

op = tok
advance()
e = sprintf("eval(\""s\", "s, "s) 11

, op, e, fact())

return e

function fact(e) { # (expr) $fact ident
if (tok == " (") {

eat("("); e = expr(); eat(")")
return"(" e ")"

else if (tok == 11 $") {
eat("$")
return "field(" fact() ")"

else if (tok- /~[A-Za-z][A-Za-z0-9]*/)

return ident()
else if (tok- /~-?([0-9]+\.?[0-9]*1\.[0-9]+)/)

e = tok
advance()
return "num((float)" e ")"

else
error("unexpected " tok " at line " NR)

number

function ident(id, e) { # name I name[expr] name(exprlist)
if (lmatch(tok, /~[A-Za-z][A-Za-z 0-91*/))

error("unexpected " tok " at line " NR)
id = tok
advance()
if (tok == "[") { #array

eat("["); e = expr(); eat("]")
return "array(" id " " e ")"

else if (tok == "(") # function call
eat("(11

)

if (tok I= ") ") {
e = exprlist()
eat(")")

else eat(")")
return id 11

(" e ")" #calls are statements
else

return id # variable

151

152 UTILE. LANGUAGES CHAPTER 6

6.7 Summary
Building a little language is often a productive approach to a programming

task. Awk is convenient for translating languages in which lexical analysis and
parsing can be done with field splitting and regular expression pattern matching.
Associative arrays are good for storing symbol-table information. The pattern
action structure matches pattern-directed languages.

The design choices for new languages in new application areas are often dif
ficult to make without some experimentation. In awk it is easy to construct
prototypes for feasibility experiments. The results may suggest modifications to
an initial design before a large investment in implementation has been made.
Once a successful prototype processor has been created, it is relatively straight
forward to transcribe the prototype into a production model using compiler
construction tools like lex and yacc, and compiled programming languages
like C.

Bibliographic Notes

The assembler and interpreter are patterned after one developed by Jon
Bentley and John Dallen for a software engineering course; their experience is
described in "Exercises in software design," IEEE Transactions on Software
Engineering, 1987.

The grap language for typesetting graphs is described in an article by Jon
Bentley and Brian Kernighan in Communications of the ACM, August, 1986.
That issue also contains a Programming Pearls column by Bentley on "Little
Languages."

For more discussion of how to construct a recursive-descent translator from a
grammar, see Chapter 2 of Compilers: Principles, Techniques, and Tools, by
Abo, Sethi, and Ullman (Addison-Wesley, 1986).

7 EXPERIMENTS WITH ALGORITHMS

Often the best way to understand how something works is to build it and do
some experiments. This is particularly true for algorithms: writing code
illuminates and clarifies issues that are too easily glossed over with pseudo-code.
Furthermore, the resulting programs can be tested to ensure that they behave as
advertised, which is not true of pseudo-code.

Awk is a good tool for this kind of experimentation. If a program is written
in awk, it's easy to concentrate on the algorithm inste~d of language details. If
the algorithm is ultimately to be part of a larger program, it may be more pro
ductive to get it working in isolation first. Small awk programs are also excel
lent for building a scaffold for debugging, testing, and performance evaluation,
regardless of what language the algorithm itself was implemented in.

This chapter illustrates experiments with algorithms. The first half describes
three sorting methods that are usually encountered in a first course on algo
rithms, with awk programs for testing, performance measurement, and profiling.
The second half shows several topological sorting algorithms that culminate in a
version of the Unix file-updating utility make.

7.1 Sorting
This section covers three well-known and useful algorithms: insertion sort,

quicksort, and heapsort. Insertion sort is short and simple, but efficient only for
sorting a few elements; quicksort is one of the best general-purpose sorting tech
niques; heapsort optimizes worst-case performance. For each of these algo
rithms, we will give the basic ideas, show an implementation, present testing
routines, and evaluate the performance.

Insertion Sort

Basic idea. Insertion sort is similar to the method of sorting a sequence of
cards by picking up the cards one at a time and inserting each card into its
proper position in the hand.

153

154 EXPERIMENTS WITH ALGORITHMS CHAPTER 7

Implementation. The following code uses this method to sort an array
A[1], ... , A[n] into increasing order. The first action reads the input a line at
a time into the array; the END action calls isort, then prints the results:

insertion sort

A[NR] = $0

END isort(A, NR)

}

for (i = 1; i <= NR; i++)
print A[i]

isort- sort A[1 .• n] by insertion

function isort(A,n, i,j,t) {

}

for (i = 2; i <= n; i++)
for (j = i; j > 1 && A[j-1] > A[j]; j--)

swap A[j-1] and A[j]
t = A[j-1]; A[j-1] = A[j]; A[j] = t

}

Elements 1 through i -l of A are in order at the beginning of the outer loop of
isort. The inner loop moves the element currently in the i-th position towards
the beginning of the array past any larger elements. At the end of the outer
loop, all n elements will be in order.

This program will sort numbers or strings equally well. But beware of mixed
input - the comparisons will sometimes be surprising because of coercions.

If at the beginning A contains the eight integers

8 1 6 3 5 2 4 7

the array passes through the following configurations:

811 6 3 52 4 7
1 816 3 5 2 4 7
1 6 813 5 2 4 7
1 3 6 815 2 4 7
1 3 5 6 812 4 7
1 2 3 5 6 814 7
1 2 3 4 5 6 817
1 2 3 4 5 6 7 81

The vertical bar separates the sorted part of the array from the elements that
have yet to be considered.

Testing. How should we test isort? We could just type at it to see what
happens. That's a necessary first step, of course, but for a program of any size
it's not a substitute for more careful testing. A second possibility is to generate
a large number of sets of random numbers and check the outputs. That's cer
tainly an improvement, but we can do even better with a small set of tests by a

SECTION 7.1 SORTING 155

systematic attack on places where code usually goes wrong - the boundaries
and special cases. For sorting routines, those might include the following:

a sequence of length 0 (the empty input)
a sequence of length 1 (a single number)
a sequence of n random numbers
a sequence of n sorted numbers
a sequence of n numbers sorted in reverse order
a sequence of n identical numbers

One of the goals of this chapter is to show how awk can be used to help with
testing and evaluation of programs. Let us illustrate by mechanizing test gen
eration and evaluation of results for the sorting routines.

There are two distinct approaches, each with its advantages. The first might
be called "batch mode": write a program to execute a pre-planned set of tests,
exercising the sort function as suggested above. The following routines generate
the data and check the results. In addition to isort itself, there are functions
for creating arrays of various types of data and for checking whether the array
is sorted.

batch test of sorting routines

0 elements 11

0) ; check (A, 0)
1 element 11

BEGIN {
print "
isort(A,
print "
genid(A, 1); isort(A, 1); check(A, 1)

n = 10
print II tl n II random integers 11

genrand(A, n); isort(A, n); check(A,

print II tl n II sorted integers"
gensort(A, n); isort(A, n); check(A,

n)

n)

print " " n " reverse-sorted integers"
genrev(A, n); isort(A, n); check(A, n)

print 11 11 n " identical integers"
genid(A, n); isort(A, n); check(A, n)

function isort(A,n, i,j,t) {
for (i = 2; i <= n; i++)

for (j = i; j > 1 && A[j-1] > A[j]; j--) {
swap A[j-1] and A[j]
t = A[j-1]; A[j-1] = A[j]; A[j] = t

156 EXPERIMENTS WITH ALGORITHMS

#test-generation and sorting routines •..

function check(A,n, i) {
for (i = 1; i < n; i++)

if (A[i] > A[i+1])

CHAPTER 7

printf("array is not sorted, element %d\n", i)

function genrand(A,n, i) { # put n random integers in A
for (i = 1; i <= n; i++)

A[i] = int(n*rand())

function gensort(A,n, i) { # put n sorted integers in A
for (i = 1; i <= n; i++)

A[i] = i
}

function genrev(A,n, i) { # put n reverse-sorted integers
for (i = 1; i <= n; i++) #in A

A[i] = n+1-i

function genid(A,n, i) # put n identical integers in A
for (i = 1; i <= n; i++)

A[i] = 1

The second approach to testing is somewhat less conventional, but particu
larly suited to awk. The idea is to build a framework that makes it easy to do
tests interactively. This style is a nice complement to batch testing, especially
when the algorithm in question is less well understood than sorting. It's also
convenient when the task is debugging.

Specifically, we will design what is in effect a tiny language for creating test
data and operations. Since the language doesn't have to do much or deal with a
big user population, it doesn't have to be very complicated. It's also easy to
throw the code away and start over if necessary. Our language provides for
automatic generation of an array of n elements of some type, for explicit specifi
cation of the data array, and, looking ahead to the rest of this chapter, for nam
ing the sort to be exercised. We have omitted the sorting and data generation
routines, which are the same as in the previous example.

The basic organization of the program is just a sequence of regular expres
sions that scan the input to determine the type of data and type of sorting algo
rithm to use. If the input doesn't match any of these patterns, an error message
suggests how to use it correctly. This is often more useful than merely saying
that the input was wrong.

SECTION 7.1 SORTING 157

interactive test framework for sort routines

/A[0-9]+.*rand/ { n = $1; genrand(A, n); dump(A, n); next
/A[0-9]+.*id/ { n = $1; genid(A, n); dump(A, n); next }
/A(0-9]+.*SOrt/ { n $1; gensort(A, n); dump(A, n); next
/A[0-9]+.*rev/ { n $1; genrev(A, n); dump(A, n); next }
/Adata/ { # use data right from this line

for (i = 2; i <= NF; i++)
A[i-1] = Si

n = NF - 1
next

/q.*sort/ { qsort(A, 1, n); check(A, n); dump(A, n); next
/h.*sort/ { hsort(A, n); check(A, n); dump(A, n); next }
/i.*sort/ { isort(A, n); check(A, n); dump(A, n); next}
1.1 {print "data •.. IN [randlidlsortlrev]; [qhi]sort" }

function dump(A, n) { #print A[1] •• A[n]
for (i = 1; i <= n; i++)

print£(11 %s 11
, A[i])

print£ ("\n 11
)

#test-generation and sorting routines •.•

Regular expressions provide a forgiving input syntax; any phrase that looks
remotely like "quicksort," for example, will result in a quicksort. We can also
enter data directly as an alternative to automatic generation; this permits us to
test the algorithms on text as well as numbers. To illustrate, here is a short dia
log with the code above:

10 random
9 8 4 6 7 2 4 0 4 0

isort
0 0 2 4 4 4 6 7 8 9

10 reverse
10 9 8 7 6 5 4 3 2 1

qsort
1 2 3 4 5 6 7 8 9 10

data now is the time for all good men
hsort
all for good is men now the time

Performance. The number of operations that isort performs depends on n,
the number of items to be sorted, and on how sorted they already are. Insertion
sort is a quadratic algorithm; that is, in the worst case, its running time grows
as the square of the number of items being sorted. That means that sorting
twice as many elements will take about four times as long. If the items happen
to be almost in order already, however, there's much less work to do, so the run
ning time grows linearly, that is, proport~onally to the number of items.

1 58 EXPERIMENTS WITH ALGORITHMS CHAPTER 7

The graph below shows how isort performs as a function of the number of
elements to be sorted on three kinds of inputs: reverse-sorted, random, and
equal-element sequences. We are counting comparisons and exchanges of items,
which is a fair measure of the amount of work in a sorting procedure. As you
can see, the performance of isort is worse for reverse-sorted sequences than it
is for random sequences and both of these are much worse than equal-element
sequences. The performance on a sorted sequence (not shown here) is similar to
that for an equal-element sequence.

10000

8000 INSERTION SORT

reverse-sorted

6000
Comparisons
+Exchanges

4000

2000

0

0 20 40 60 80 100
Number of elements

In summary, insertion sort is good for sorting small numbers of items, but its
performance degrades badly as the number of items goes up, except when the
input is almost sorted.

We generated the data for this graph and the others in this chapter by
adding two counters to each sorting function, one for comparisons and one for
exchanges. Here is the version of isort with counters:

function isort(A,n, i,j,t) { # insertion sort
for (i = 2; i <= n; i++) # with counters

for (j = i; j > 1 && ++comp &&
A[j-1] > A[j] && ++exch; j--) {

swap A[j-1] and A[j]
t = A[j-1]; A[j-1] = A[j]; A[j] = t

The counting is all done in one place, in the test of the inner for loop. Tests
joined by &.&. are evaluated left to right until a term is false. The expression
++comp is always true (pre-incrementing is mandatory here), so comp is

SECTION 7.1 SORTING 159

incremented precisely once per comparison of array elements, just before the
comparison. Then exch is incremented if and only if a pair is out of order.

The following program was used to organize the tests and prepare data for
plotting; again, it amounts to a tiny language that specifies parameters.

test framework for sort performance evaluation
input: lines with sort name, type of data, sizes ...
output: name, type, size, comparisons, exchanges, c+e

for (i = 3; i <= NF; i++)
test($1, $2, Si)

function test(sort, data, n) {
comp = exch = 0
if (data - /rand/)

genrand(A, n)
else if (data - /id/)

genid(A, n)
else if (data - /rev/)

genrev(A, n)
else

print "illegal type of data in", SO
if (sort - /q.*sort/)

qsort(A, 1, n)
else if (sort - /h.*sort/)

hsort(A, n)
else if (sort - /i.*sort/)

isort(A, n)
else print

"illegal type of sort in 11
, $0

print sort, data, n, comp, exch, comp+exch

#test-generation and sorting routines •..

The input is a sequence of lines like

isort random 0 20 40 60 80 100
isort ident 0 20 40 60 80 100

and the output consists of lines containing the name, type, size, and counts for
each size. The output is fed into the graph-drawing program grap, a primitive
version of which was described in Chapter 6.
Exercise 7-1. The function check is actually not a very strong test. What kinds of
errors does it fail to detect? How would you implement more careful checking? D

Exercise 7-2. Most of our tests are based on sorting integers. How does isort perform
on other kinds of input? How would you modify the testing framework to handle more
general data? D

Exercise 7-3. We have tacitly assumed. that each primitive operation takes constant
time. That is, accessing an array element, comparing two values, addition, assignment,

160 EXPERIMENTS WITH ALGORITHMS CHAPTER 7

and so forth, each take a fixed amount of time. Is this a reasonable assumption for awk
programs? Test it by writing programs that process large numbers of items. D

Quicksort

Basic idea. One of the most effective general-purpose sorting algorithms is a
divide-and-conquer technique called quicksort, devised by C. A. R. Hoare in the
early 1960's. To sort a sequence of elements, quicksort partitions the sequence
into two subsequences and recursively sorts each of them. In the partition step,
quicksort selects an element from the sequence as the partition element and
divides the remaining elements into two groups: those less than the partition ele
ment, and those greater than or equal to it. These two groups are sorted by
recursive calls to quicksort. If a sequence contains fewer than two elements, it
is already sorted, so quicksort does nothing to it.

Implementation. There are several ways to implement quicksort, depending
on how the partition step is done. Our method is simple to understand, though
not necessarily the fastest. Since the algorithm is used recursively, we'll
describe the partition step as it acts on a subarray A[left], A[left+1], ... ,
A[right].

First, to choose the partition element, pick a random number r in the range
[left, right]; any element could be chosen, but randomization works better
when the data already has some order. The element pat position r in the array
becomes the partition element. Then swap A[left] with A[r]. During the
partition step the array holds the element p in A [left], followed by the ele
ments less than p, followed by the elements greater than or equal to p, followed
by the as-yet unprocessed elements:

t
left

<p

t
last

I unprocessed I
t t
i right

The index last points to the last element found to be less than p and the index
i points to the next unprocessed element. Initially, last is equal to left and
i is equal to left+ 1.

In the partition loop, we compare the element A[i] with p. If A[i] ~ p,
we just increment i; if A[i] < p, we increment last, swap A[last] with
A[i] and then increment i. Once we have processed all elements in the array
in this manner, we swap A[left] with A[last]. At this point we have com
pleted the partition step and the array looks like this:

SECTION 7.1 SORTING 161

I <p I pI ~p I
t t t

left last right

Now we apply the same process to the left and the right subarrays.
Suppose we use quicksort to sort an array with the eight elements

8 1 6 3 5 2 4 7

At the first step we might select 4 as the partition element. The partition step
would then rearrange the array around this element like this:

2 1 31415 6 8 7

We would then sort each of the subarrays 213 and 5687 recursively. The
recursion ceases when a subarray has less than two elements.

The function qsort that implements quicksort is shown below. This pro
gram can be tested using the same testing routines that we gave for insertion
sort.

quicksort

A[NR] = $0 }

END qsort(A, 1, NR)
for (i = 1; i <= NR; i++)

print A[i]

qsort- sort A[left .. right] by quicksort

function qsort(A,left,right, i,last) {
if (left >= right) # do nothing if array contains

return # less than two elements
swap(A, left, left+ int((right-left+1)*rand()))
last = left # A[left] is now partition element
for (i = left+1; i <= right; i++)

if (A[i] < A[left])
swap(A, ++last, i)

swap(A, left, last)
qsort(A, left, last-1)
qsort(A, last+1, right)

function swap(A,i,j, t) {
t = A[i]; A[i] = A[j]; A[j] t

Performance. The number of operations that qsort performs depends on
how evenly the partition element divides the array at each step. If the array is

··.f

162 EXPERIMENTS WITH ALGORITHMS CHAPTER 1

always split evenly, then the running time is proportional to nlogn. Thus sort
ing twice as many elements takes only slightly more than twice as long.

In the worst case every partition step might split the array so that one of the
two subarrays is empty. This situation would occur if, for example, all elements
were equal. In that case, quicksort becomes quadratic. Fortunately, this uneven
performance does not occur with random data. The graph below shows how
qsort performs on the three kinds of inputs we used for insertion sort: reverse
sorted, random, and equal-element sequences. As you can see, the number of
operations for the equal-element sequences grows significantly faster than for
the two other types.

Comparisons
+Exchanges

6000~------------------------------~

4000

2000

0

QUICKSORT

20 40

/
equal-element , ' , , , ,

/

, ,

random

60 80
Number of elements

,
, , , ,

100

Exercise 7-4. Add counting statements to qsort to count the number of comparisons
and exchanges. Does your data look like ours? 0

Exercise 7-5. Instead of counting operations, time the program. Does the graph look
the same? Try some larger examples. Does the graph still look the same? O

Heap sort

Basic idea. A priority queue is a data structure for storing and retrieving
elements. There are two operations: insert a new element into the queue or
extract the largest element from the queue. This suggests that a priority queue
can be used to sort: first put all the elements into the queue and then remove
them one at a time. Since the largest remaining element is removed at each
step, the elements will be withdrawn in decreasing order. This technique under
lies heapsort, a sorting algorithm devised by J. W. J. Williams and R. W. Floyd
in the early 1960's.

SECTION 7.1 SORTING 163

Heapsort uses a data structure called a heap to maintain the priority queue.
We can think of a heap as a binary tree with two properties:

1. The tree is balanced: the leaves appear on at most two different levels and
the leaves on the bottom level (furthest from the root) are as far left as pos
sible.

2. The tree is partially ordered: the element stored at each node is greater than
or equal to the elements at its children.

Here is an example of a heap with ten elements:

76

72
/'

34

/' 59 63 17 29

/' I 37 33 28

There are two important characteristics of a heap. The first is that if there
are n nodes, then no path from the root to a leaf is longer than log2n. The
second is that the largest element is always at the root ("the top of the heap").

We don't need an explicit binary tree if we simulate a heap with an array A
in which the elements at the nodes of the binary tree appear in the array in a
"breadth-first" order. That is, the element at the root appears in A[1] and its
children appear in A[2] and A[3]. In general, if a node is in A[i], then its
children are in A [2i] and A [2i + 1] , or in just A [2i] if there is only one child.
Thus, the array A for the elements shown above would contain:

A[1] A[2] A[3] A[4] A[S] A[6] A[7] A[S] A[9] A[10]

1 76 1 12 1 34 1 59 1 63 1 11 1 29 1 37 1 33 1 28 1

The partially ordered property of the elements in a heap means that A[i] is
greater than or equal to its children at A[2i] and A[2i+l], or to its child at
A[2i] if there is only one child. If the elements of an array satisfy this condi
tion, we say that the array has the "heap property."

Implementation. There are two phases to heapsort: building a heap and 1.f~.-· ·:
1 extracting the elements in order. Both phases use a function called ·

heapify(A, i, j) to give the subarray A[i], A[i+ 1], ... , A[j] the heap pro- 14. 1

perty assuming A[i+ 1], ... , A[j] already has the property. The basic opera- f~' A
tion of heapify is to compare A[i] with its children. If A[i] has no children r;~~ ~~1
or is greater than its children, then heapify merely returns; otherwise, it · ~ ·,
swaps A[i l with its largest child and repeats the operation at that child. /.,f1

In the first phase, heapsort transforms the array into a heap by calling I . · ~~ ·
heapify(A,i ,n) fori going from n/2 down to 1.

164 EXPERIMENTS WITH ALGORITHMS CHAPTER 1

At the start of the second phase i is set to n. Then three steps are executed
repeatedly. First, A[1], the largest element in the heap, is exchanged with
A[i], the rightmost element in the heap. Second, the size of the heap is
reduced by one by decrementing i. These two steps have the effect of removing
the largest element from the heap. Note that in doing so the last n -i + 1 ele
ments in the array are now in sorted order. Third, heapify (A, 1 , i -1) is
called to restore the heap property to the first i -I elements of A.

These three steps are repeated until only a single element, the smallest, is
left in the heap. Since the remaining elements in the array are in increasing
order, the entire array is now sorted. During this process, the array looks like
this:

l
1

heap

l

sorted

n

The elements in cells 1 through i of the array have the heap property; those in
cells i + 1 through n are the largest n -i elements sorted in increasing order. Ini
tially, i=an and there is no sorted part.

Consider the array of elements shown above, which already has the heap
property. In the first step of the second phase we exchange elements 76 and
28:

28 72 34 59 63 17 29 37 33 I 76

In the second step we decrement the heap size to nine. Then in the third step
we restore the heap property to the first nine elements by moving 28 to its
proper position in the heap by a sequence of swaps:

72 63 34 59 28 17 29 37 33 I 76

We can visualize this process as percolating the element 28 down a path in the
binary tree from the root towards a leaf until the element is moved into a node
all of whose children are less than or equal to 28:

~
63

/ ' 59 28

/' 37 33

72
...............

34
/' 17 29

In the next iteration, the first step exchanges elements 72 and 33:

33 63 34 59 28 17 29 37 I 72 76

The second step decrements i to eight and the third propagates 33 to its proper
position:

SECTION 7.1 SORTING 165

63 59 34 37 28 17 29 33 l 72 76

The next iteration begins by exchanging 63 and 33, and eventually produces
the following configuration:

59 37 34 33 28 17 29 l 63 72 76

This process continues until the array is sorted.
The program below sorts its input into increasing order using this procedure.

For reasons that will become apparent when we discuss profiling in the next sec
tion, we have enclosed most single-expression statements in braces.

heapsort

A[NR] = $0 }

END hsort(A, NR)
for (i = 1; i <= NR; i++)

{ print A[i] }

function hsort(A,n, i) {

for (i = int(n/2); i >= 1.
' { heapify(A, i, n) }

for (i = n; i > 1.
'

i--) {
{ swap(A, 1 ' i) }
{ heapify(A, 1 ' i-1)

function heapify(A,left,right,
for (p = left; (c = 2*P) <=

if (c < right && A[c+1]
{ C++ }

if (A[p] < A[c])
{ swap(A, c, p)

function swap(A,i,j, t) {

i--) # phase

phase 2

p,c) {
right; p
> A[c])

c) {

t = A[i]; A[i] = A[j]; A[j] t

Performance. The total number of operations of hsort is proportional to
nlogn, even in the worst case. Below we ·see the number of operations from
running hsort on the same sequences we used to evaluate insertion sort and
quicksort. Note that equal-element performance is better than quicksort.

166 EXPERIMENTS WITH ALGORITHMS CHAPTER 7

Comparisons
+Exchanges

2~~--------------------------------~

1500 HEAPSORT

1000

500
equal-element

0 20 40 60 80 100

Number of elements

The next graph compares the performance of the three sorting algorithms of
this section on random input data.

Comparisons
+Exchanges

5~~--------------------------------~

4000 COMPARISON OF
SORTING METHODS

3000 (RANDOM DATA)
isort. · ·

2~

1000

0

0 20 40 60 80 100

Number of elements

Recall that on random data the performance of isort is quadratic while
that of hsort and qsort is nlogn. The graph clearly shows the importance of
good algorithms: as the number of elements increases the difference in perfor
mance between the quadratic and the nlog n programs widens dramatically.

SECTION 7.2 PROFILING 167

Exercise 7-6. check always found that the output of isort was sorted. Will this be
true of qsort and hsort? Would it be true when the input is just numbers, or just
strings that don't look like numbers? D

7.2 Profiling

In the previous section, we evaluated the performance of a sorting program
by counting the number of times certain operations were executed. Another
effective way to evaluate the performance of a program is to profile it, that is,
count the number of times each statement is executed. Many programming
environments provide a tool, called a pro filer, that will print a program with an
execution count attached to each statement.

We don't have a profiler for awk, but in this section, we will show how to
approximate one with two short programs. The first program, makeprof,
makes a profiling version of an awk program by inserting counting and printing
statements into the program. When the profiling program is run on some input,
it counts the number of times each statement is executed and creates a file
prof. cnts containing these counts. The second program, printprof,
attaches the statement counts from prof. cnts to the original program.

To simplify the problem, we will only count the number of times each left
brace is "executed" during the run of a program. Often this is good enough
because every action and every compound statement is enclosed in braces. Any
statement can be enclosed in braces, however, so we can obtain as precise an
execution count as we wish by bracketing statements.

Here is the program makeprof that transforms an ordinary awk program
into a profiling program. It inserts a counting statement of the form

_LBcnt(i]++;

after the first left brace appearing on any input line, and it adds a new END

action that prints the values of these counters into prof . cnts, one count per
line.

makeprof - prepare profiling version of an awk program
usage: awk -f makeprof awkprog >awkprog.p
running awk -f awkprog.p data creates a
file prof.cnts of statement counts for awkprog

}

sub(/{/, "{ LBcnt[" ++ numLB "]++; ")
print

END { printf("END { for (i ; 1; i <; %d; i++)\n", numLB)
printf("\t\t print _LBcnt[i] > \"prof.cnts\"\n}\n 11

)

}

After running the profiling version of a program on some input data, we can

168 EXPERIMENTS WITH ALGORITHMS CHAPTER 7

attach the statement counts in prof . cnts to the original program with
print pro£:

printprof - print profiling counts
usage: awk -f printprof awkprog
prints awkprog with statement counts from prof.cnts

BEGIN { while (getline < "prof.cnts" > 0) cnt[++i] = $1 }
/{/ { printf(""Sd", cnt[++j]) }

{ printf("\t"s\n", $0) }

As an example, consider profiling the heapsort program from the end of
Section 7 .1. To create the profiling version of this program, type the command
line

awk -f makeprof heapsort >heapsort.p

The resulting program heapsort . p looks like this:

heapsort

_LBcnt[1]++; A[NR] = $0 }

END LBcnt[2]++; hsort(A, NR)
for (i = 1; i <= NR; i++)

{ _LBcnt[3]++; print A[i]

function hsort(A,n, i) { LBcnt[4]++;
for (i = int(n/2); i >; 1; i--) #phase

{ LBcnt[S]++; heapify(A, i, n) }
for (i ~ n; i > 1; i--) { LBcnt[6]++;

{ LBcnt[7]++; swap(A, 1, i) }
{ :LBcnt[8]++; heapify(A, 1, i-1)

phase 2

function heapify(A,left,right, p,c) { LBcnt[9]++;
for (p =left; (c = 2•p) <=right; p-= c) { LBcnt[10]++;

if (c <right && A[c+11 > A[c]) -
{ LBcnt[11]++; C++ }

if (A[p] < A[c])
{ _LBcnt[12]++; swap(A, c, p)

~
}·:'
f~ction swap(A,i,j, t) { LBcnt[131++;

t = A[i]; A[i] = A[j]; A[j] = t

END for (i = 1; i <= 13; i++)
print _LBcnt[i] > "prof.cnts"

As you can see, thirteen counting statements have been inserted into the original
program, along with a second END section that writes the counts into

SECTION 7.2 PROFILING 169

prof. cnts. Multiple END actions are treated as if they were just combined
into one in the order in which they appear.

Now, suppose we run heapsort.p on 100 random integers. We can create
a listing of the original program with the statement counts resulting from this
run by typing the command line

awk -f printprof heapsort

The result is:

100
1

100

so
99
99
99

149
521

232

485

584

heapsort

{ A[NR] = $0 }

END { hsort(A, NR)
for (i = 1 ; i <= NR; i++)

{ print A[i] }
}

function hsort(A,n, i) {

for (i = int(n/2); i >= 1;
{ heapify(A, i, n) }

for (i = n; i > 1 ; i--) {
{ swap(A, 1' i) }
{ heapify(A, 1 ' i-1)

function heapify(A,left,right,
for (p = left; (c = 2*p) <=

if (c < right && A[c+1]
{ C++ }

if (A[p] < A[c])
{ swap(A, c, p)

function swap(A,i,j, t) {
t = A[i]; A[i] = A[j]; A[j]

i--) # phase

phase 2

p,c) {
right; p
> A[c])

t

c) {

Simplicity, the greatest strength of this implementation, is also its greatest
weakness. The program makeprof blindly inserts a counting statement after
the first left brace it sees on each line; a more careful makeprof would not put
counting statements inside string constants, regular expressions, or comments.
It would also be nice to report execution times as well as counts, but that's not
feasible with this approach.

Exercise 7-7. Modify the pro filer so that counting statements will not be inserted into
string constants, regular expressions, or comments. Will your version permit you to pro
file the profiler? 0

Exercise 7-8. The profiler doesn't work if there is an exit statement in the END action.
Why? Fix it. o

170 EXPERIMENTS WITH ALGORITHMS CHAPTER 7

7.3 Topological Sorting

In a construction project, some jobs must be done before others can begin.
We would like to list them so that each job precedes those that must be done
after it. In a program library, a program a may call program h. Program h in
turn may call programs d and e, and so on. We would like to order the pro
grams so that a program appears before all the programs it calls. (The Unix
program lorder does this.) These problems and others like them are instances
of the problem of topological sorting: finding an ordering that satisfies a set of
constraints of the form "x must come before y." In a topological sort any
linear ordering that satisfies the partial order represented by the constraints is
sufficient.

The constraints can be represented by a graph in which the nodes are labeled
by the names, and there is an edge from node x to node y if x must come before
y. The following graph is an example:

If a graph contains an edge from x toy, then x is called a predecessor of y,
and y is a successor of x. Suppose the constraints come in the form of
predecessor-successor pairs where each input line contains x and y representing
an edge from node x to node y, as in this description of the graph above:

a h
b g
c f
c h
d i
e d
f b
f g
h d
h e
i b

If there is an edge from x toy, then x must appear before y in the output.
Given the input above, one possible output is the list

a c f h e d i b g

There are many other linear orders that contain the partial order depicted in the
graph; another is

c a h e d i f b g

The problem of topological sorting is that of ordering the nodes of a graph so

SECTION 7.3 TOPOLOGICAL SORTING 171

that all predecessors appear before their successors. Such an ordering is possi
ble if and only if the graph does not contain a cycle, which is a sequence of
edges that leads from a node back to itself. If the input graph contains a cycle,
then we must say so and indicate that no linear ordering exists.

Breadth-First Topological Sort

There are many algorithms that can be used to sort a graph topologically.
Perhaps the simplest is one that at each iteration removes from the graph a
node with no predecessors. If all nodes can be removed from the graph this
way, the sequence in which the nodes are removed is a topological sort of the
graph. In the graph above, we could begin by removing node a and the edge
that comes from it. Then we could remove node c, then nodes f and h in either
order, and so on.

Our implementation uses a first-in, first-out data structure called a queue to
sequence the processing of nodes with no predecessors in a "breadth-first"
manner. After all the data has been read in, a loop counts the nodes and places
all nodes with no predecessors on the queue. A second loop removes the node at
the front of the queue, prints its name, and decrements the predecessor count of
each of its successors. If the predecessor count of any of its successors becomes
zero, those successors are put on the back of the queue. When the front catches
up to the back and all nodes have been considered, the job is done. But, if some
nodes are never put on the queue, those nodes are involved in cycles and no
topological sort is possible. When no cycles are present, the sequence of nodes
printed is a topological sort.

The first three statements of tsort read the predecessor-successor pairs
from the input and construct a successor-list data structure like this:

node pent sent slist
a 0 I h
b 2 I q
e 0 2 f, h
d 2 I i
e I I d
f 1 2 b, q
q 2 0
h 2 2 d, e
i I 1 b

The arrays pent and sent keep track of the number of predecessors and
successors for each node; slist[x ,i] gives the node that is the i-th successor
of node x. The first line creates an element of pent if it is not already present.

172 EXPERIMENTS WITH ALGORITHMS

tsort - topological sort of a graph
input: predecessor-successor pairs
output: linear order, predecessors first

II put $1 in pent

CHAPTER 7

if (l($1 in pent))
pcnt($1] = 0

pcnt($2]++
slist[S1, ++scnt[$1]]

II count predecessors of $2
$2 # add $2 to successors of $1

}
END { for (node in pent)

nodecnt++
if (pcnt[node] 0)

q[++back] = node
if it has no predecessors
queue node

for (front = 1; front <=back; front++)
print£(" ~s", node = q[front])

}

for (i = 1; i <= scnt[node]; i++)
if (--pcnt[slist[node, i]] == 0)

queue s if it has no more predecessors
q[++back] = slist[node, i]

if (back I= nodecnt)
print "\nerror: input contains a cycle"

print£("\n")

The implementation of a queue is especially easy in awk: it's just an array
with two subscripts, one for the front and one for the back.
Exercise 7-9. Fix tsort so it can handle isolated nodes in the graph. 0

Depth-First Search

We will construct one more topological sort program in order to illustrate an
important technique called depth-first search, which can also be used to solve
many other graph problems, including one that arises in the Unix utility make.
Depth-first search is another method of visiting the nodes of a graph, even one
with cycles, in a systematic manner. In its purest form, it is just a recursive
procedure:

dfs(node):
mark node visited
for all unvisited successors s of node do

dfs(s)

The reason the technique is called depth-first search is that it starts at a node,
then visits an unvisited successor of that node, then an unvisited successor of
that successor, and so on, plunging as deeply into the graph as quickly as it can.
Once there are no unvisited successors of a node, the search retreats to the
predecessor of that node and visits another of its unvisited successors in a
depth-first search.

SECTION 7.3 TOPOLOGICAL SORTING 173

Consider the following graph. If it starts at node 1, a depth-first search will
visit nodes 1, 2, 3, and 4. At that point, if it starts with another unvisited node
such as 5, it will then visit nodes 5, 6, and 7. If it starts at a different place,
however, a different sequence of visits will be made.

Depth-first search is useful for finding cycles. An edge like (3, 1) that goes
from a node to a previously visited ancestor is called a back edge. Since a back
edge identifies a cycle, to find cycles all we need to do is find back edges. The
following function will test whether a graph, stored as a successor-list data
structure like that in tsort, contains a cycle reachable from node:

dfs - depth-first search for cycles

function dfs(node, i, s) {
visited[node] =
for (i = 1; i <= scnt[node]; i++)

if (visited[s = slist[node, i]] -- 0)
dfs(s)

else if (visited[s] == 1)
print "cycle with back edge (" node " " s ")"

visited[node] = 2

This function uses an array visited to determine whether a node has been
traversed. Initially, visi ted[x] is 0 for all nodes. Entering a node x for the
first time, dfs sets visited[x] to 1, and leaving x for the last time it sets
visited[x] to 2. During the traversal, dfs uses visited to determine
whether a node y is an ancestor of the current node (and hence previously
visited), in which case visited[y] is 1, or whether y has been previously
visited, in which case visited[y] is 2.

Depth-First Topological Sort

The function dfs can easily be turned into a node-sorting procedure. If it
prints the name of each node once the search from that node is completed, it
will generate a list of nodes that is a reverse topological sort, provided again
there are no cycles in the graph. The program rtsort prints the reverse of a
topological sort of a graph, given a sequence of predecessor-successor pairs as
input. It applies depth-first search to every node with no predecessors. The

174 EXPERlMENTS WITH ALGORITHMS CHAPTER 7

data structure is the same as that in tsort.

rtsort - reverse topological sort
input: predecessor-successor pairs
output: linear order, successors first

put $1 in pent
if (l($1 in pent))

pcnt[$1] = 0
pcnt[$2]++
slist[$1, ++scnt[$1]] :::

count predecessors of $2
$2 # add $2 to successors of $1

END for (node in pent)
nodecnt++
if (pcnt[node] 0)

rtsort(node)
}
if (pncnt l= nodecnt)

print "error: input contains a cycle"
print£ ("\n")

function rtsort(node, i, s) {
visited[node] ::: 1
for (i ::: 1; i <= scnt[node]; i++)

if (visited[s ::: slist[node, ill 0)
rtsort(s)

else if (visited[s] :::::: 1)
printf("error: nodes "s and "s are in a cycle\n",

s, node)
visited[node] ::: 2
print£ (" "s" , node)
pncnt++ # count nodes printed

Applied to the predecessor-successor pairs at the beginning of this section,
rtsort would print

g b i d e h a f c

Notice that this algorithm detects some cycles explicitly by finding a back edge,
while it detects other cycles only implicitly, by failing to print all the nodes, as
in this graph:

Exercise 7-10. Modify rtsort to print its output in the usual order, predecessors first.
Can you achieve the same effect without modifying rtsort'? D

SECTION 7.4 MAKE: A FILE UPDATING PROGRAM 175

7.4 Make: A File Updating Program
A large program may consist of declarations and subprograms that are

stored in scores of separate files, with an involved sequence of processing steps
to create a running version. A complex document Oike this chapter) may con
sist of graphs and diagrams stored in multiple files, programs to be run and
tested, and then interdependent operations to make a printed copy. An
automatic updating facility is an invaluable tool for processing such systems of
files with a minimum of human and machine time. This section develops a
rudimentary updating program, patterned after the Unix make command, that
is based on the depth-first search technique of the previous section.

To use the updater, one must explicitly describe what the components of the
system are, how they depend upon one another, and what commands are needed
to construct them. We'll assume these dependencies and commands are stored
in a file, called a makefile, that contains a sequence of rules of the form:

name: t 1 t 2 ... tn
commands

The first line of a rule is a dependency relation that states that the program or
file name depends on the targets t., t 2 , ... , tn where each t; is a filename or
another name. Following each dependency relation may be one or more lines of
commands that list the commands necessary to generate name. Here is an
example of a makefile for a small program with two C files and a yacc
grammar file, a typical program-development application.

prog: a.o b.o c.o
cc a.o b.o c.o -ly -o prog

a.o: prog.h a.c
cc -c prog.h a.c

b.o: prog.h b.c
cc -c prog.h b.c

c.o: c.c
cc -c c.c

c.c: c.y
yacc c.y
mv y.tab.c c.c

print:
pr prog.h a.c b.c c.y

The first line states that prog depends on the target files a. o, b. o and c. o.
The second line says that prog is generated by using the C compiler command
cc to link a. o, b. o, c. o, and a library into the file prog. The next rule
(third line) states that a. o depends on the targets prog. h and a. c and is
created by compiling these targets; b. o is the same. The file c. o depends on
c. c, which in turn depends on c. y, which has to be processed by the yacc
parser generator. Finally, the name print does not depend on any target; by
convention, for targetless names make will always perform the associated action,
in this case printing all the source files with the command pr.

176 EXPERIMENTS WITH ALGORITHMS CHAPTER 7

The dependency relations in the makefile can be represented by a graph
in which there is an edge from node x to node y whenever there is a dependency
rule with x on the left side and y one of the targets on the right. For a rule
with no targets, a successorless node with the name on the left is created. For
the makefile above, we have the following dependency graph:

prog print

/~~
a.o b.o c.o

1\1\ \
a.c prog.h b.c c.c

c.y

We say that xis older than y if y was changed after x was last changed. To
keep track of ages, we will attach to each x an integer age [x] that represents
how long ago x was last modified. The larger the age, the older the file: x is
older than y if age [x] > age [y].

If we use the dependency relation

n: a b c

we update n by first updating a, b and c, which may in turn require further
updates. If any of the targets is neither a name in the makefile nor an exist
ing file, we report the error and quit. Otherwise, we next examine the ages of
the targets, and if at least one is newer than n (that is, if n is older than some
thing it depends on), we execute the commands associated with this dependency
relation. After executing the commands, we recompute the ages of all objects.
With a dependency relation like

print:
pr prog.h a.c b.c c.y

that is, one with no targets, we always execute the command associated with
this rule and recompute all ages.

The program make takes a name as an argument and updates name using
the following algorithm:

1. It finds the rule for name in the makefile and recursively updates the tar
gets t 1, t 2, ... , tn on the right side of the dependency relation for name. If
for some i, t1 is not a name and file t1 does not exist, make aborts the
update.

2. If, after updating all the t1 's, the current version of name is older than one or

SECTION 7.4 MAKE: A FILE UPDATING PROGRAM 177

more of the t/s, or if name has no targets, make executes the command lines
following the dependency relation for name.

In essentially the same manner as in the previous section, make constructs a
dependency graph from the dependency relations in the makefile. It uses the
Unix command

ls -t

to order the files (newest first) by the time at which each file was last modified.
Each filename is entered into the array age and given a time that is its rank in
this ordering; the oldest file has the largest rank. If a name is not a file in the
current directory, make sets its time to a large value, thus making it very old
indeed.

Finally, make uses the depth-first search procedure of the last section to
traverse the dependency graph. At node n, make traverses the successors of n;
if any successor becomes younger than the current age of n, make executes the
commands for n and computes a new set of ages. If make discovers that the
dependency relation for a name is cyclic, it says so and aborts the update.

To illustrate how make works, suppose we type the command line

make prog

for the first time. Then make will execute the following sequence of commands:

cc -c prog.h a.c
cc -c prog.h b.c
yacc c.y
mv y.tab.c c.c
cc -c c.c
cc a.o b.o c.o -ly -o prog

Now if we make a change to b. c and again type

make prog

make will only execute

cc -c prog.h b.c
cc a.o b.o c.o -ly -o prog

Because the other files have not changed since the last time prog was created,
make does not process them. Finally, if we again say

make prog

the result is

prog is up to date

because nothing has to be done.

178 EXPERIMENTS WITH ALGORITHMS CHAPTER 7

make - maintain dependencies

BEGIN {
while (getline < 11 makefile 11 > 0)

if ($0- /A(A-Za-z)/) { # $1: $2 $3 •••
sub(/:/, '"')
if (++names[nm = $1] > 1)

error(nm 11 is multiply defined")
for (i = 2; i <= NF; i++) # remember targets

slist[nm, ++scnt[nm]] Si
else if ($0 - /A\t/) # remember cmd for

cmd[nm] = cmd[nm] SO "\n" # current name
else if (NF > 0)

error("illegal line in makefile: 11 SO)
ages() #compute initial ages
if (ARGV(1] in names) {

if (update(ARGV[1]) 0)
print ARGV[1] " is up to date"

else
error(ARGV[1] " is not in makefile")

function ages(f,n,t)
for (t = 1; ("ls -t" I getline f) > 0; t++)

age(f] = t # all existing files get an age
close("ls -t")
for (n in names)

if (I (n in age)) # if n has not been created
age[n] 9999 # make n really old

function update(n, changed,i,s)
if (I (n in age)) error(n " does not exist")
if (l(n in names)) return 0
changed = 0
visited[n] = 1
for (i = 1; i <= scnt[n]; i++) {

if (visited[s = slist[n, i]] == 0) update(s)
else if (visited[s] == 1)

error(s " and " n 11 are circularly defined")
if (age[s] <= age[n]) changed++

visited[n] = 2
if (changed I I scnt[n] == 0) {

print£("%s", cmd[n])
system(cmd[n]) #execute cmd associated with n
ages() #recompute all ages
age[n] 0 # make n very new
return

return 0

function error(s) { print "error: " s; exit }

SECTION 7.5 SUMMARY 179

Exercise 7-11. How many times is the function ages executed on the example'? 0

Exercise 7-12. Add some parameter or macro substitution mechanism so rules can be
easily changed. o
Exercise 7-13. Add implicit rules for common updating operations; for example, . c files
are processed by cc to make • o files. How can you represent the implicit rules so they
can be changed by users? 0

7.5 Summary
This chapter may have more of the flavor of a basic course in algorithms

than instruction in awk. The algorithms are genuinely useful, however, and we
hope that in addition you have seen something of how awk can be used to sup
port experimentation with programs.

Scaffolding is one of the lessons. It often takes no more time to write a
small program to generate and control testing or debugging than it does to per
form a single test, but the scaffolding can be used over and over to do a much
more thorough job.

The other aspect is more conventional, though it bears repeating. Awk is
often just right for extracting data from the output of some program and mas
saging it for another; for example. that is how we converted sorting measure
ments into grap input and how we folded statement counts into a profile.

Bibliographic Notes

Our quicksort, heapsort, and topological sort programs are borrowed from
Jon Bentley, as is the inspiration for the scaffolding and profiling programs.
Bentley's Programming Pearls columns in Communications of the ACM, June
and July, 1985, are good further reading. For an extensive discussion and
analysis of sorting and searching algorithms see D. E. Knuth's The Art of Com
puter Programming, Volume 3: Sorting and Searching (Addison-Wesley, 1973),
or Abo, Hopcroft, and Ullman's The Design and Analysis of Computer Algo
rithms (Addison-Wesley, 1974).

The Unix program make is originally due to Stu Feldman; it was first
described in Software -Practice and Experience, April, 1979. For more discus
sion of make and its behavior, see the article "Side-effects in Automatic File
Updating" by W. Miller and E. Myers in Software-Practice and Experience,
September, 1986.

8 EPILOG

By now the reader should be a reasonably adept awk user, or at least no
longer an awkward beginner. As you have studied the examples and written
some of your own, you have probably wondered why awk programs are the way
they are, and perhaps wanted to make them bett~r.

The first part of this chapter describes a little history, and discusses the
strong and weak points of awk as a programming language. The second part
explores the performance of awk programs, and suggests some ways of reformu
lating problems that have become too large for a single program.

8.1 AWK as a Language
We began working on awk in 1977. At that time the Unix programs that

searched files (grep and sed) only had regular expression patterns, and the
only actions were substitution and printing the whole line. There were no fields
and no numeric operations. Our goal, as we remember it, was to create a
pattern-scanning language that would understand fields, one with patterns to
match fields and actions to manipulate them. Initially, we just wanted to do
transformations on data, to scan the inputs of programs for validation, and to
process the outputs to generate reports or to rearrange them for input to other
programs.

The 1977 version had only a few built-in variables and predefined functions.
It was designed for writing short programs like those in Chapter 1. Further
more, it was designed to be used by our immediate colleagues with little instruc
tion, so for regular expressions we used the familiar notation of lex and
egrep, and for the other expressions and statements we used the syntax of C.

Our model was that an invocation would be one or two lines long, typed in
and used immediately. Defaults were chosen to match this style. In particular,
white space as the default field separator, implicit initializations, and no type
declarations for variables were choices that made it possible to write one-liners.
We, being the authors, "knew" how the language was supposed to be used, and
so we only wrote one-liners.

181

182 EPILOG CHAPTER 8

Awk quickly spread to other groups and users pushed hard on the language.
We were surprised at how rapidly awk became popular as a general-purpose
programming language; our first reaction to a program that didn't fit on one
page was shock and amazement. What had happened was that many people
restricted their use of the computer to the shell (the command language) and to
awk. Rather than writing in a "real" programming language, they were
stretching the tools they liked.

The idea of having each variable maintain both a string and a numeric
representation of its value, and use the form appropriate to the context, was an
experiment. The goal was to make it possible to write short programs using
only one set of operators, but have them work correctly in the face of ambiguity
about strings and numbers. The goal was largely met, but there are still occa
sional surprises for the unwary. The rules in Chapter 2 for resolving ambiguous
cases evolved from user experience.

Associative arrays were inspired by SNOBOL4 tables, although they are not
as general. Awk was born on a slow machine with a small memory, and the
properties of arrays were a result of that environment. Restricting subscripts to
be strings is one manifestation, as is the restriction to a single dimension (even
with syntactic sugar). A more general implementation would allow multi
dimensional arrays, or at least allow arrays to be array elements.

Major facilities were added to ·awk in 1985, largely in response to user
demand. These additions included dynamic regular expressions, new built-in
variables and functions, multiple input streams, and, most importantly, user
defined functions.

The new substitution functions, match, and dynamic regular expressions
provided useful capabilities with a only small increase in complexity for users.

Before qetline the only kind of input was the implicit input loop implied
by the pattern-action statements. That was fairly constricting. In the original
language, a program like the form-letter generator that has more than one
source of input required setting a flag variable or some similar trick to read the
sources. In the new language, multiple inputs can be naturally read with
qetline's in the BEGIN section. On the other hand, qetline is overloaded,
and its syntax doesn't match the other expressions. Part of the problem is that
qetline needs to return what it reads, and also some indication of success or
failure.

The implementation of user-defined functions was a compromise. The chief
difficulties arose from the initial design of awk. We did not have, or want,
declarations in the language. One result is the peculiar way of declaring local
variables as extra formal parameters. Besides looking strange, this is error
prone in large programs. In addition, the absence of an explicit concatenation
operator, an advantage for short programs, now requires the opening parenthesis
of a function call to follow the function name with nc intervening blanks.
Nevertheless, the new facilities made awk significantly better for larger applica
tions.

SECTION 8.2 PERFORMANCE 183

8.2 Performance
In a way, awk is seductive - it is often quite easy to write a program that

does what you want, and for modest amounts of data, is fast enough, especially
when the program itself is still undergoing changes.

But as a working awk program is applied to bigger and bigger files, it gets
slower and slower. Rationally this must be so, but waiting for your results may
be too much to bear. There are no simple solutions, but this section contains
suggestions that might be helpful.

When programs take too long to run, there are several things to think about
doing, besides just putting up with it. First, it is possible that the program can
be made faster, either by a better algorithm or by replacing some frequently
executed expensive construction with a cheaper one. You have already seen in
Chapter 7 how much difference a good algorithm can make - the difference
between a linear algorithm and a quadratic one grows dramatically even with
modest increases in data. Second, you can use other, faster programs along
with awk, restricting awk's role. Third, you can rewrite the entire program in
some other language.

Before you can improve the behavior of a program, you need to understand
where the time is going. Even in languages where each operation is close to the
underlying hardware, people's initial estimates of where time is being spent are
notoriously unreliable. Such estimates are even trickier in awk, since many of
its operations do not correspond to conventional machine operations. Among
these are pattern matching, field splitting, string concatenation, and substitu
tion. The instructions that awk executes to implement these operations vary
from machine to machine, and so do their relative costs in awk programs.

Awk has no built-in tools for timing. Thus it's up to the user to understand
what's expensive and what's cheap in the local environment. The easiest way to
do this is to make differential measurements of various constructs. For exam
ple, how much does it cost to read a line or increment a variable? We made
measurements on a variety of computers, ranging from a PC to a mainframe.
We ran three programs on an input file of 10,000 lines (500,000 characters), as
well as the Unix command we for comparison. The results are summarized in
this table:

PROGRAM
AT&T DEC VAX AT&T DEC VAX

SUN-3
6300+ 11-750 382/600 8550

END { print NR } 30 17.4 5.9 4.6 1.6
{n++}; END {print n} 45 24.4 8.4 6.5 2.4
{ i = NF } 59 34.8 12.5 9.3 3.3
we command 30 8.2 2.9 3.3 1.0

The first program takes 1.6 seconds on a DEC VAX 8550; this means that it
takes 0.16 milliseconds to read a line. The second program shows that it takes

184 EPILOG CHAPTER 8

another 0.08 milliseconds to increment a variable. The third program shows
that it takes 0.33 milliseconds to split each line into fields. By contrast, it takes
one second to count the I 0,000 lines with a C program (the Unix program we),
or 0.1 milliseconds per line.

Similar measurements show that a string comparison like $1=="xxx" costs
about the same as the regular expression match $ 1-/xxx/. The cost of match
ing a regular expression is just about independent of its complexity, however,
while a compound comparison costs more as it gets more complicated. Dynamic
regular expressions can be more expensive, since it may be necessary to re
create a recognizer for each test.

Concatenating lots of strings is expensive:

print $1 " " $2 " " $3 " " $4 " " $5

takes twice as long as

print $1, $2, $3, $4, $5

As we hinted earlier, arrays have complex behavior. As long as there are
not too many elements in an array, accessing an element takes a constant
amount of time. After that the amount of time increases roughly linearly with
the number of elements. If there are a very large number of elements, the
operating system may get involved, looking for memory to store things in. Thus,
each element in a big array is more expensive than an element in a little array.
This is worth remembering if you are trying to store a large file in an array.

The second line of attack is to restructure the computation so that some of
the work is done by other programs. Throughout this book, we made extensive
use of the system sort command, for example, rather than writing our own
sort in awk. If you have to search a big file to isolate a small amount of data,
use grep or egrep for the searching and awk for the processing. If there are
a large number of substitutions (for example, the cross-reference program of
Chapter 5), you might use a stream editor like sed for that part. In other
words, break the job into separate pieces, and apply the most appropriate tool to
each piece.

The last resort is to rewrite the offending program in some other language.
The guiding principle is to replace the useful built-in features of awk with sub
routines, and otherwise use much the same structure as the original program.
Don't attempt to simulate exactly what awk does. Instead provide just enough
for the problem at hand. A useful exercise is to write a small library that pro
vides field-splitting, associative arrays, and regular expression matching; in
languages like C that do not provide dynamic strings, you will also want some
routines that allocate and free strings conveniently. With this library in hand,
converting an awk program into something that will run faster is quite feasible.

Awk makes easy many things that are hard in conventional languages, by
providing features like pattern matching, field splitting, and associative arrays.
The penalty paid is that an awk program using these features, however easy to

SECTION 8.3 CONCLUSION 185

write, is not as efficient as a carefully written C program for the same task.
Frequently efficiency is not critical, and so awk is both convenient to use, and
fast enough.

When awk isn't fast enough, it is important to measure the pieces of the job,
to see where the time is going. The relative costs of various operations differ
from machine to machine, but the measurement techniques can be used on any
machine. Finally, even though it is less convenient to program in lower-level
languages, the same principles of timing and understanding have to be applied,
or else the new program will be both harder to write and less efficient.

8.3 Conclusion
Awk is not a solution to every programming problem, but it's an indispens

able part of a programmer's toolbox, especially on Unix, where easy connection
of tools is a way of life. Although the larger examples in the book might give a
different impression, most awk programs are short and simple and do tasks the
language was originally meant for: counting things, converting data from one
form to another, adding up numbers, extracting information for reports.

For tasks like these, where program development time is more important
than run time, awk is hard to beat. The implicit input loop and the pattern
action paradigm simplify and often entirely eliminate control flow. Field split
ting parses the most common forms of input, while numbers and strings and the
coercions between them handle the most common data types. Associative arrays
provide both conventional array storage and the much richer possibilities of
arbitrary subscripts. Regular expressions are a uniform notation for describing
patterns of text. Default initialization and the absence of declarations shorten
programs.

What we did not anticipate were the less conventional applications. For
example, the transition from "not programming" to "programming" is quite
gradual: the absence of the syntactic baggage of conventional languages like C
or Pascal makes awk easy enough to learn that it has been the first language for
a surprising number of people.

The features added in 1985, especially the ability to define functions, have
led to a variety of unexpected applications, like small database systems and
compilers for little languages. In many cases, a wk is used for a prototype, an
experiment to demonstrate feasibility and to play with features and user inter
faces, although sometimes the awk program remains the production version.
Awk has even been used for software engineering courses, because it's possible
to experiment with designs much more readily than with larger languages.

Of course, one must be wary of going too far - any tool can be pushed
beyond its limits - but many people have found awk to be valuable for a wide
range of problems. We hope we have suggested ways in which awk might be
useful to you as well.

186 EPILOG CHAPTER 8

Bibliographic Notes

The original version of awk was described by the authors in "A WK-a pat
tern scanning and processing language," which appeared in Software-Practice
and Experience, April 1979. This article also contains a technical discussion of
the design of the language.

Much of the syntax of awk is derived from C, described in The C Program
ming Language, by B. W. Kernighan and D. M. Ritchie (Prentice-Hall, 1978).
The regular expressions used in the programs egrep, lex, and sed are
described in Section 2 of The Unix Programmer's Manual. Chapter 3 of Com
pilers: Principles, Techniques, and Tools, by Abo, Sethi, and Ullman
(Addison-Wesley, 1986) contains a description of the regular expression
pattern-matching technique used in the new version of awk.

You might find it interesting to compare awk with similar languages. Cer
tainly the patriarch of the family is SNOBOL4, described in The SNOBOL4 Pro
gramming Language, by R. Griswold, J. Poage, and I. Polonsky (Prentice-Hall,
1971). Although SNOBOL4 suffers from an unstructured input language, it is
powerful and expressive. ICON, described in The ICON Programming
Language by R. Griswold and M. Griswold (Prentice-Hall,· 1983), is a lineal
descendant of SNOBOL, with a nicer syntax and a better integration of the pat
tern facilities with the rest of the language. The REXX command interpreter
language for IBM systems is another language in the same spirit, although with
more emphasis on its role as a shell or command interpreter; see, for example,
M. F. Cowlishaw's The REXX Language (Prentice-Hall, 1985).

A AWK SUMMARY

This appendix contains a summary of the awk language. In syntactic rules, com
ponents enclosed in brackets [...] are optional.

Command-line
awk [-Fs] 'program' optional list of filenames
awk [-Fs] -f progfile optional list of filenames

The option -Fs sets the field separator variable FS to s. If there are no filenames, the
standard input is read. A filename can be of the form var-text, in which case it is
treated as an assignment of text to the variable var, performed at the time when that
argument would be accessed as a file.

A WK programs

An awk program is a sequence of pattern-action statements and function definitions.
A pattern-action statement has the form:

pattern { action }
An omitted pattern matches all input lines; an omitted action prints a matched line.

A function definition has the form:
function name (parameter-list) { statement }

Pattern-action statements and function definitions are separated by newlines or semi
colons and can be intermixed.

Patterns
BEGIN
END
expression
/regular expression/
pattern && pattern
pattern I I pattern
I pattern
(pattern)
pattern , pattern

The last pattern is a range pattern, which cannot be part of another pattern. Similarly,
BEGIN and END do not combine with other patterns.

187

188 AWK SUMMARY

Actions

An action is a sequence of statements of the following kinds:

break
continue
delete array-element
do statement while (expression)
exit [expression]
expression
if (expression) statement [else statement]
input-output statement
for (expression; expression; expression) statement
for (variable in array) statement
next
return [expression]
while (expression) statement
{ statements }

APPENDIX A

A semicolon by itself denotes the empty statement. In an if-else statement, the first
statement must be terminated by a semicolon or enclosed in braces if it appears on the
same line as else. Similarly, in a do statement, statement must be terminated by a
semicolon or enclosed in braces if it appears on the same line as while.

Program format

Statements are separated by newlines or semicolons or both. Blank lines may be
inserted before or after any statement, pattern-action statement, or function definition.
Spaces and tabs may be inserted around operators and operands. A long statement may
be broken by a backslash. In addition, a statement may be broken without a backslash
after a comma, left brace, &.&., II, do, else, and the right parenthesis in an if or for
statement. A comment beginning with # can be put at the end of any line.

Input-output

close (expr)
getline
getline <file
getline var
getline var <file
print
print expr-list
print expr-list >file
print£ fmt, expr-list
print£ fmt, expr-list >file
system (cmd -line)

close file or pipe denoted by expr
set $0 from next input record; set NF, NR, FNR

set SO from next record of file; set NF
set var from next input record; set NR, FNR
set var from next record of file
print current record
print expressions in expr-list
print expressions on file
format and print
format and print on file
execute command cmd-line, return status

The expr-list following print and the fmt, expr-list following print£ may be
parenthesized. In print and print£, >>file appends to the file, and I command
writes on a pipe. Similarly, command I getline pipes into getline. The function
getline returns 0 on end of file, and -1 on error.

AWK SUMMARY APPENDIX A 189

Printf format conversions

These conversions are recognized in print£ and sprint£ statements.

%c ASCII character
%d decimal number
%e [-]d.ddddddE[+-]dd
%£ [-] ddd. dddddd
%g e or f conversion, whichever is shorter,

with nonsignificant zeros suppressed
%o unsigned octal number
%s string
%x unsigned hexadecimal number
%% print a %; no argument is converted

Additional parameters may lie between the %and the control letter:

left-justify expression in its field
width pad field to this width as needed; leading 0 pads with zeros
.prec maximum string width or digits to right of decimal point

Built -in variables

The following built-in variables can be used in any expression:

ARGC
ARGV
FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS
RLENGTH
RS
RSTART
SUBSEP

number of command-line arguments
array of command-line arguments (ARGV[0 •• ARGC-1])
name of current input file
input record number in current file
input field separator (default blank)
number of fields in current input record
input record number since beginning
output format for numbers (default "%. 6g")
output field separator (default blank)
output record separator (default newline)
length of string matched by regular expression in match
input record separator (default newline)
beginning position of string matched by match
separator for array subscripts of form [i,j, ...] (default "\034 ")

ARGC and ARGV include the name of the invoking program (usually awk) but not the
program arguments or options. RSTART is also the value returned by match.

The current input record is named $0. The fields in the current input record are
named $1, $2, ... , SNF.

Built-in string functions

In the following string functions, s and t represent strings, r a regular expression,
and i and n integers.

An &. in the replacement string s in sub and gsub is replaced by the matched
string; \&. yields a literal ampersand.

190 AWK SUMMARY

gsub(r,s,t)

index(s ,I)
length(s)
match(s ,r)

APPENDIX A

globally substitute s for each substring of 1 matched by r,
return number of substitutions; if 1 is omitted, $0 is used

return the index of 1 in s, or 0 if s does not contain 1
return the length of s
return index of where s matches r or 0 if there is no match;

set RSTART and RLENGTH
split(s,a,/s) splits into array a onfs, return number of fields;

if fs is omitted, FS is used in its place
sprint£ <fml, expr-lisl) return expr-lisl formatted according to fml
sub (r ,s, I) like gsub except only the first matched substring is replaced
substr (s, i, n) return the n-character substring of s starting at i;

if n is omitted, return the suffix of s starting at i

Built-in arithmetic functions

atan2 (y ,x)
cos(x)
exp(x)
int(x)
log(x)
rand()
sin(x)
sqrt(x)
srand(x)

arctangent of ylx in radians in the range -1r to 1r

cosine (angle in radians)
exponential ex
truncate to integer
natural logarithm
pseudo-random number r, 0 ~ r <
sine (angle in radians)
square root
set new seed for random number generator;

uses time of day if no x given

Expression operators (increasing in precedence)

Expressions may be combined with the following operators:

= +=
?:
I I
I I

&&
in
- 1-
< <:::

+ -
* I
+ -
++
$

%

-= *= I= %= "= assignment
conditional expression
logical OR
logical AND
array membership
regular expression match, negated match

> >::: I::: -- relationals
string concatenation (no explicit operator)
add, subtract
multiply, divide, mod
unary plus, unary minus, logical NOT
exponentiation
increment, decrement (prefix and postfix)
field

All operators are left associative, except assignment, ? :, and ", which are right associa
tive. Any expression may be parenthesized.

AWKSUMMARY APPENDIX A 191

Regular expressions

The regular expression metacharacters are

\ A $ o [] : () * + ?
The following table summarizes regular expressions and the strings they match:

$

[abc ...]
["abc ...]
rl lr2
(rtHr2)

(r) *
(r) +
(r)?

(r)

matches the nonmetacharacter c
matches the escape sequence or literal character c
matches the beginning of a string
matches the end of a string
matches any single character
character class: matches any of abc ...
negated class: matches any single character but abc ...
alternation: matches any string matched by r 1 or r 2

concatenation: matches xy where r 1 matches x and r 2 matches y
matches zero or more consecutive strings matched by r
matches one or more consecutive strings matched by r
matches the null string or one string matched by r
grouping: matches the same strings as r

The operators are listed in increasing precedence. Redundant parentheses in regular
expressions may be omitted as long as the precedence of operators is respected.

Escape sequences

These sequences have special meanings in strings and regular expressions.

\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\ddd octal value ddd, where ddd is 1 to 3 digits between 0 and 7
\c any other character c literally, e.g., \ 11 for " and \\for \

Limits

Any particular implementation of awk enforces some limits. Here are typical values:

100 fields
3000 characters per input record
3000 characters per output record
1 024 characters per field
3000 characters per print£ string
400 characters maximum literal string
400 characters in character class
15 open files
1 pipe
double-precision floating point

Numbers are limited to what can be represented on the local machine, e.g., 10-38 •• 1038
;

numbers outside this range will have string values only.

192 AWK SUMMARY APPENDIX A

Initialization, comparison, and type coercion

Each variable and field can potentially be a string or a number or both at any time.
When a variable is set by an assignment

var = expr

its type is set to that of the expression. ("Assignment" includes +=, -=,etc.> An arith
metic expression is of type number, a concatenation is of type string, and so on. If the
assignment is a simple copy, as in v1 = v2, then the type of v1 is set to that of v2.

In comparisons, if both operands are numeric, the comparison is made numerically.
Otherwise, operands are coerced to string if necessary, and the comparison is made on
strings. The type of any expression can be coerced to numeric by subterfuges such as

expr + 0

and to string by
expr 1111

(i.e., concatenation with a null string). The numeric value of an arbitrary string is the
numeric value of its numeric prefix.

Uninitialized variables have the numeric value 0 and the string value 11 11
• Accord

ingly, if xis uninitialized,
if (x) ...

is false, and
if (lx) •••
if (X == 0)
if (X == 1111

) •••

are all true. But note that
if (x == "0") •••

is false.
The type of a field is determined by context when possible; for example,

$1++

implies that $1 must be coerced to numeric if necessary, and
$1 = $1 "," $2

implies that $1 and $2 will be coerced to strings if necessary.
In contexts where types cannot be reliably determined, e.g.,

if {$1 == $2) •••

the type of each field is determined on input. All fields are strings; in addition, each
field that contains only a number is also considered numeric.

Fields that are explicitly null have the string value 1111
; they are not numeric. Non

existent fields (i.e., fields past NF) and SO for blank lines are treated this way too.
As it is for fields, so it is for array elements created by split.
Mentioning a variable in an expression causes it to exist, with the values 0 and "" as

described above. Thus, if arr [i] does not currently exist,
if (arr[i] == "") ...

causes it to exist with the value 11
" and thus the if is satisfied. The test

if (i in arr) ...

determines if arr [i] exists without the side effect of creating it.

B ANSWERS TO SELECTED EXERCISES

Exercise 3-1. An easy way to ignore blank lines is to replace the first line of sum3 by
nfld == 0 && NF > 0 { nfld = NF

0

Exercise 3-3. Without the test, sums of nonnumeric columns get accumulated, but not
printed. Having the test avoids the possibility that something will go wrong (like over
flow) while accumulating the useless sums. There is no significant effect on speed. o

Exercise 3-4. This problem is easily handled with an associative array:
{ total($1] += $2 }

END { for (x in total) print x, total[x] : "sort" }

0

Exercise 3-5. Suppose there cannot be more than 25 stars in a line. By setting max to
25, the following program leaves the data unchanged if the longest line would fit, and

./ otherwise scales the lines so the longest is 25 long. The new array y is used to hold the
scaled lengths so that the x counts are still correct.

0

x[int($1/10)]++ }
END max = MAXSTARS = 25

for (i = 0; i <= 10; i++)
if (x[i] > max)

max = x[i]
for (i = 0; i <= 10; i++)

y[i] = x[i]/max * MAXSTARS
for (i = 0; i < 10; i++)

print£('' "2d- "2d: %3d %s\n",
10•i, 10+i+9, x[i], rep(y[i],"•"))

print£("100: "3d "s\n", x[10], rep(y[10],"•"))

function rep(n,s, t)
while (n-- > 0)

t = t s
return t

return string of n s's

Exercise 3-6. This requires two passes over the data, one to determine the range of the
buckets and one to assign items to them. o

193

194 ANSWERS TO SELECTED EXERCISES APPENDIX B

Exercise 3-7. The problem of where commas go in numbers is not clearly defined.
Despite the canons of software engineering, it is common to have to solve a problem
without knowing exactly what it is. Here are two possible answers. The following pro
gram sums integers that have commas in the conventional places:

/A[+-]?[0-9][0-9]?[0-9]?(,[0-9][0-9][0-9])•$/ {
gsub(/ ,/, "")
sum += SO
next

print "bad format:", SO)
END print sum }

Decimal numbers usually don't have commas after the decimal point. The program
/A[+-]?[0-9][0-9]?[0-9]?(,[0-9][0-9][0-9])•([.)[0-9]•)?$/

gsub (/ t / t II II)

sum += SO
next

print "bad format:", $0}
END print sum }

sums decimal numbers that have commas and a digit before the decimal point. o

Exercise 3-8. The function daynwn (y, m, d) returns the number of days, counting
from January 1, 1901. Dates are written as year month day, e.g., 2001 4 1. February
has 29 days in years divisible by 4, except that it has 28 days in years divisible by 100
but not by 400. Thus, 1900 and 2100 are not leap years, but 2000 is.

function daynum(y, m, d, days, i, n) { # 1 == Jan 1, 1901
split("31 28 31 30 31 30 31 31 30 31 30 31", days)
365 days a year, plus one for each leap year
n = (y-1901) * 365 + int((y-1901)/4)
if (y % 4 == 0) # leap year from 1901 to 2099

days[2]++
for (i = 1; i < m; i++)

n += days[i)
return n + d

{ print daynum($1, S2, $3) }

This program is correct only between 1901 and 2099; it does not check the validity of its
input. o

Exercise 3-11. One way to modify nwntowords is as follows:
function numtowords(n, cents, dols, s) { # n has 2 decimal places

cents = substr(n, length(n)-1, 2)
dols = substr(n, 1, length(n)-3)
if (dols == 0)

s = "ze~o dollars and " cents " cents exactly11

else
s intowords(dols) " dollars and 11 cents 11 cents exactly"

sub(/Aone dollars/, 11 one dollar 11
, s)

g'SUb(/ +/, II
11

, S)
return s

The sub command fixes "one dollars," and the gsub removes multiple blanks, even if
nothing is wrong. This is easier than testing whether any changes are needed. 0

ANSWERS TO SELECTED EXERCISES APPENDIX 8 195

Exercise 3-13. For simplicity. suppose the pairs are aa and bb, cc and dd, ee. and
ff. As in the text. assume that none of these are allowed to nest or overlap.

BEGIN {

}

expects["aa"] "bb"
expects["cc"] "dd"
expects ["ee"] "ff"

/"(aalcclee)/ {
if (p I= 1111)

}

print "line", NR, ": expected " p
p = expects[substr($0, 1, 2)]

/"(bblddlff)/ {

END

x = substr($0, 1, 2)
if (p I= x) {

p

print "line", NR, ": saw" x
if (p)

print ", expected 11
, p

if (p I= II")
print "at end, missing", p

The variable p encodes the state by recording what matching delimiter is expected. The
program takes advantage of the fact that all the opening delimiters are the same length.
An alternative would be to require that the delimiters always be $1. o

Exercise 3-14. Choose some marker, for instance =, that cannot be a legal pattern.
Then

BEGIN { FS = "'\t" }
1"=1 { print substr($0, 2); next }
{ printf("%s {\n\tprintf(\"line %%d, %s: %%s'\\n'\'1 ,NR,$0) }\n",

$1 t $2)

prints the rest of lines that start with the marker. 0

Exercise 4-1. One possibility is to give the date explicitly on the command line:

awk -f prep3 pass=1 countries pass=2 countries I
awk -f form3 date='January 1, 1988'

The variable date is then set on the command line. and its assignment can be left out of
the BEGIN action of form3. As usual, some sort of quoting is needed for command-line
arguments containing blanks. Another possibility is to pipe the output of the date com
mand into the variable, as suggested in Section 3.1. o

Exercise 4-3. Before looking at our solution, check to see what yours does on numbers
without decimal points. For brevity our solution just does a single column. We replace
nwid by two numbers, lwid and rwid. lwid accumulates the length of the number to
the left of the decimal point, and rwid counts the number of digits to the right of the
decimal point and the decimal point itself. These are computed using the patterns left
and right. The space needed for numbers is then lwid+rwid, which may be bigger
than the length of the longest number. so the calculation for wid takes this into account.

196 ANSWERS TO SELECTED EXERCISES

table1 - single column formatter
input: one column of strings and decimal numbers
output: aligned column

BEGIN {
blanks = sprintf("%100s", " ")
number = ""[+-]?([0-9]+[.]?[0-91* I [. 1 [0-9]+)S''
left = ""[+-1?[0-9]*"
right= "[.)[0-9]*"

row[NR] = S1
if ($1 - number)

APPENDIX 8

match(S1, left) #matches the empty string, so RLENGTH>=O
lwid = max(lwid, RLENGTH)

END

if (lmatch(S1, right))
RLENGTH = 0

rwid = max(rwid, RLENGTH)
wid max(wid, lwid + rwid)

else
wid max(wid, length($1))

for (r = 1; r <= NR; r++) {
if (row[r] - number)

print£("%" wid "s\n", numjust(row[r]))
else

print£("%-" wid "s\n", row[r])

function max(x, y) { return (x > y) ? x y }

function numjust(s) { # position s
if (lmatch(s, right))

RLENGTH = 0
returns substr(blanks, 1, int(rwid-RLENGTH+(wid-(lwid+rwid))/2))

Each number that doesn't use all of lwid has to be shifted left, so there is a slightly
more elaborate calculation in numjust. D

Exercise 4-5.

awk '
BEGIN { FS = "\t"; pat= ARGV[1]; ARGV[1]
$1 - pat {

printf("%s:\n", S1)
printf("\t%d million people\n", $3)
printf("\t%.3£ million sq. mi.\n", $2/1000)
printf("\t%.1£ people per sq. mi.\n", 1000*$3/$2)

' "$1" <countries

is one way.
Another, using var-text on the command line instead of ARGV, is

ANSWERS TO SELECTED EXERCISES APPENDIX B 197

0

awk •
BEGIN { FS "' "\t" }
S1 - pat {

printf(""s:\n", $1)
printf("\t"d million people\n", $3)
print£ ("\t%. 3£ million sq. mi. \n", $2/1000)
print£("\t%.1£ people per sq. mi. \n", 1000*$3/$2)

• pat::"$1" <countries

Exercise 4-6. To check that the files are sorted, keep track of the last record read from
each input, and compare it with the result of getline in getone. 0

Exercise 4-10. Replace the loop in doquery that calls system with one that concaten
ates all the commands into one string x, for instance

for (j "' 1; j <:: ncmd(i]; j++) x"' x cmd[i, j] "\n"

and then use x in the call to system. If x is made a local variable in doquery, it will
be properly initialized on each call. o

Exercise 4-11. Here is a partial solution that remembers which derived files have been
computed during one execution of qawk, and avoids recomputing them.

function doquery(s, i,j,x) {
for (i in qattr) # clean up for next query

delete qattr(i]
query "' s # put $names in query into qattr, without S
while (match(s, /\$(A-Za-z]+/)) {

qattr[substr(s, RSTART+1, RLENGTH-1)] :: 1
s "' substr(s, RSTART+RLENGTH+1)

for (i"' 1; i <:: nrel && lsubset(qattr, attr, i);)
i++

if (i > nrel) # didn't find a table with all attributes
missing(qattr)

else { # table i contains attributes in query
for (j in qattr) # create awk program

gsub("\\$" j, "S" attr[i,j], query)
if (lexists[i] && ncmd(i] > 0) {

for (j"' 1; j <= ncmd[i]; j++)
x "' x cmd[i, j] "\n"

print "executing\n" x # for debugging
if (system(x) I= 0) { # create table i

print "command failed, query skipped\n", x
return

exists[i]++

awkcmd = sprintf("awk -F'\t' '%s' %s", query, relname[i])
printf("query: %s\n", awkcmd) #for debugging
system(awkcmd)

The array exists remembers which derived files have been computed. This version of
doquery also includes the answer to the last problem. 0

Exercise 4-12. The simplest answer is to change qawk to begin

198 ANSWERS TO SELECTED EXERCISES APPENDIX B

BEGIN { readrel(nrelfile"); RS = nn }

Then a query consists of everything up to a blank line. Regardless of the mechanism,
queries have to turn into legal awk programs. 0

Exercise 5-l. The "random" numbers are of course completely deterministic: knowing
the seed and the algorithm fixes the sequence of values. There are many properties,
however, that the sequence shares with a random sequence. A complete discussion may
be found in Knuth's The Art of Computer Programming, Volume 2. 0

Exercise 5-2. This code generates a random set of k distinct integers between 1 and n; it
is due to R. W. Floyd:

0

print k distinct random inteqers between 1 and n

{ random($1, $2) }

function random(k, n, A, i, r)
for (i = n-k+1; i <= n; i++)

((r = randint(i)) in A) ? A[i] A[r]
for (i in A)

print i

function randint(n) {return int(n•rand())+1 }

Exercise 5-3. The problem is to generate random bridge hands of the form:

NORTH
S: 10 9 6 4
H: 8 7
D: J 10 6
C: 10 8 5 3

WEST EAST
s: K 8 7 3 s: A J 5
H: K Q 4 3 2 H: J
D: 8 7 D: A K Q 9 2
C: A J C: K Q 6 2

SOUTH
S: Q 2
H: A 10 9 6 5
D: 5 4 3
C: 9 7 4

The program below generates a random permutation of the integers 1 through 52, which
is put into the array deck. The array is sorted into four sequences of thirteen integers
each. Each sequence represents a bridge hand; the integer 52 corresponds to the ace of
spades, 51 to the king of spades, 1 to the deuce of clubs.

The function permute (k, n) uses Floyd's technique from the previous exercise to
generate a random permutation of length k of integers between 1 and n. The function
sort (x, y) uses a method called insertion sort, discussed in Section 7.1, to sort the ele·
ments in deck[x •• y]. Finally, the function prhands formats and prints the four
hands in the manner shown above.

ANSWERS TO SELECTED EXERCISES APPENDIX B 199

0

bridge - generate random bridge hands

BEGIN { split(permute(52,52), deck) #generate a random deck
sort(1,13); sort(14,26); sort(27,39); sort(40,52) #sort hands
prhands() #format and print the four hands

function permute(k, n,
srand(); p =""

i, p, r)

for (i = n-k+1; i <= n; i++)

generate a random permutation
of k integers between 1 and n

if (p- " " (r = int(i•rand())+1) " ")
sub (11 11 r " " , " " r " " i " " , p) # put i after r in p

else p = " " r p # put r at beginning of p
return p

function sort(left,right, i,j,t) {#sort hand in deck[left .. right]
for (i = left+1; i <= right; i++)

for (j = i; j > left && deck[j-1] < deck[j]; j--)
t = deck[j-1]; deck[j-1] = deck[j]; deck[j] = t

function prhands() {
b = sprintf("%20s", " "); b40
card = 1

print the four hands
sprintf("%40s", " ")

global index into deck
suit~(13); print b" NORTH"
print b spds; print b hrts; print b dnds; print b clbs
suits(26) #create the west hand from deck[14 .. 26]
ws spds substr(b40, 1, 40 length(spds))
wh hrts substr(b40, 1, 40 length(hrts))
wd dnds substr(b40, 1, 40- length(dnds))
we clbs substr(b40, 1, 40- length(clbs))
suits(39); print" WEST" sprintf("%36s", " ") "EAST"
print ws spds; print wh hrts; print wd dnds; print we clbs
suits(52); print b" SOUTH"
print b spds; print b hrts; print b dnds; print b clbs

function suits(j) {
for (spds = "S:";

spds = spds "
for (hrts = "H:";

hrts = hrts "
for (dnds = "D:";

dnds = dnds "

#collect suits of hand in deck[j-12 .. j]
deck[card] > 39 && card <= j; card++)
"fvcard(deck[card])
deck[card] > 26 && card <= j; card++)
" fvcard(deck[card))
deck[card] > 13 && card <= j; card++)
" fvcard(deck[card])

for (clbs = "C:"; card <= j; card++)
clbs = clbs" " fvcard(deck[card])

function fvcard(i) {
if (i % 13 == 0) return "A"
else if (i % 13 12) return "K"
else if (i% 13 == 11) return "Q"
else if (i % 13 == 10) return "J"
else return (i % 13) + 1

compute face value of card i

200 ANSWERS TO SELECTED EXERCISES APPENDIX B

Exercise 5-5. Doing an intelligent job on this is hard. Simplest is to keep track of how
many characters have been put out, and to stop with an error message. when there are
too many. Slightly more complex would be to try. in gen, only to derive the empty
string or terminals. once the derivation becomes too long. Unfortunately. this won't
work on every grammar every time. One guaranteed method requires knowing the short
est output each nonterminal can produce, and forcing that when the derivation becomes
too long. This requires substantial processing of the grammar, and some specialized
knowledge. o

Exercise 5-6. We add a probability to the end of each production. These probabilities
are first read into the array rhsprob. After the grammar has been read, rhsprob is
changed so that it represents the probability of this or any previous production, rather
than this production. This makes the test in gen a little simpler; otherwise the probabil
ities would have to be be summed over and over again.

0

sentgen1 - random sentence generator with probabilities
input: grammar file; sequence of nonterminals
output: random sentences generated by the grammar

BEGIN { # read rules from grammar file
while (getline < "test-gram" > 0)

if ($2 == "->") {
i = ++lhs[$1]
rhsprob[$1, i] = SNF
rhscnt[$1, i] = NF-3
for (j = 3; j < NF; j++)

rhslist[$1, i, j-2] =
else

Sj

count lhs
0 <= probability <= 1
how many in rhs
record them

print "illegal production: " SO
for (sym in lhs)

for (i = 2; i <= lhs[sym]; i++)
rhsprob[sym, i] += rhsprob[sym, i-11

if ($1 in lhs) { # nonterminal to expand
gen($1)
printf("\n")

else
print "unknown nonterminal: 11 SO

function gen(sym, i, j) {
if (sym in lhs) { # a nonterminal

j =rand() #random production
for (i 1; i <= lhs[sym] && j > rhsprob[sym, i]; i++)

for (j 1; j <= rhscnt[sym, i]; j++) #expand rhs's
gen(rhslist[sym, i, j])

else
printf("%s ", sym)

Exercise 5-7. The standard approach is to replace recursion by a stack managed by the
user. When expanding the right-hand side of a production. the code puts it on the stack
backwards, so the output comes out in the right order.

ANSWERS TO SELECTED EXERCISES APPENDIX B 20 I

0

sentgen2 - random sentence generator (nonrecursive)
input: grammar file; sequence of nonterminals
output: random sentences generated by the grammar

BEGIN { # read rules from grammar file
while (getline < "grammar" > 0)

if ($2 == "->") {
i = ++lhs[$1]
rhscnt[$1, i] = NF-2
for (j = 3; j <= NF; j++)

rhslist[S1, i, j-2] = Sj
else

count lhs
how many in rhs
record them

print "illegal production: " SO

if ($1 in lhs) # nonterminal to expand
push($1)
gen()
printf{"\n")

else
print "unknown nonterminal: " SO

function gen(i, j)
while (stp >= 1) {

sym = pop()
if (sym in lhs) { # a nonterminal

i = int(lhs[sym] *rand()) + 1 #random production
for (j = rhscnt[sym, i]; j >= 1; j--) #expand rhs's

push(rhslist[sym, i, j])
else

print£ ("%s " , sym)

function push(s) { stack[++stp] = s }

function pop() {return stack[stp--] }

Exercise 5-9. The easiest solution is to create an initial random permutation of the
integers from I to nq, then ask the questions in that order. 0

Exercise 5-10. The cleanest way to do case conversion in awk is with an array that
maps each letter; this is pretty clumsy, however, so if you have a choice it's better to use
a program like the Unix command tr. o

Exercise 5-13. We accumulate the words into an array. If there are cnt words to be
printed on a line, then there are cnt-1 holes to fill with spaces. If there are n spaces
needed, each hole should have an average of nl (cnt-1) spaces. For each word, the
program computes this number, then decrements the number of holes and spaces. If the
extra blanks do not distribute evenly, the surplus ones are spread alternately from the
left and from the right on successive lines, to avoid "rivers" of white space.

202 ANSWERS TO SELECTED EXERCISES

I fmt.just- formatter with right justification

BEGIN
1.1
/"$/

blanks = sprintf("%60s", " ") }
for {i = 1; i <= NF; i++) addword{Si)
printline("no"); print"" }
printline("no") } END

function addword(w) {
if {cnt + size + length(w) > 60)

printline("yes")
line[++cnt] = w
size += length(w)

function printline(f, i, nb, nsp, holes) {
if (f == "no" I I cnt 1) {

for (i = 1; i <= cnt; i++)
printf("%s%s", line[i], i < cnt ? : "\n")

else if {cnt > 1) {

APPENDIX 8

dir = 1 - dir # alternate side for extra blanks
nb = 60 - size # number of blanks needed
holes = cnt - 1 # holes
for (i = 1; holes > 0; i++) {

nsp = int((nb-dir) I holes) + dir
printf("%s%s", line[i], substr(blanks, 1, nsp))
nb -= nsp
holes--

print line[cnt]

size = cnt = 0

A "no" argument to printline avoids right-justifying the last line of a paragraph. D

Exercise 5-15. It depends on whether the defective name appears anywhere else in the
document. If it does, it will be erroneously substituted away. D

Exercise 5-16.
/"\.#/

END

D

Exercise 5-18.
/"\.#/

print£("{ gsub(l%s/, \"%d\") }\n", S2, ++count[S1])
if (saw($2])

print NR ": redefinition of", $2, "from line", saw($2]
saw[$2] = NR

print£ ("I/" [.]#/\n")

s[$2] = ++count[S1]; next }
for (i in s)

gsub (i , s [i l)
print

The definition of a symbolic name must come before it is used. D

Exercise 5-19. The easiest solution consonant with the divide-and-conquer strategy is to
add a filter to the pipeline to delete rotated lines that begin with a word from the stop
list:

ANSWERS TO SELECTED EXERCISES APPENDIX 8 203

0

awk '$1 1- /A(alanlandlbylforliflinlisloflonlthelto)$/'
sort -f

Exercise 5·23. How to distinguish between a literal - and the - used as a space is a
question of style. We will use the awk escape sequence convention: \before the charac·
ter when we want the literal character. We'll consider only -; the others are just ela
borations in both ix. genkey and ix. format. For -, we replace all instances of \
by some string that cannot occur, namely a tab followed by 1. No string containing a
tab can occur, because tab is the field separator. The remaining tildes are substituted
away, and the escaped ones are put back, unescaped. Thus, the first gsub in
ix. genkey is replaced by

gsub(/,-/, "'t1", $1)
gsub(/-1, " ", $1)
gsub(/,t1/, "-", S1)

protect quoted tildes
unprotected tildes now become blanks
restore protected tildes

Also, the tildes should no longer be removed from the sort key. o

Exercise 6-1. Only four lines have to be added, two in pass 1 and two in pass 2.

0

ASSEMBLER PASS 1
nextmem = 0
FS = 11

['tl+"
new

while (getline <srcfile >
input[nextmem] = $0
sub(/#. *I, "")
symtab[$1) = nextmem

0) {
new: remember source line
strip comments
remember label location

if ($2 I= "") { # save op, addr if present
print $2 "'t" $3 >tempfile
nextmem++

close(tempfile)

ASSEMBLER PASS 2
nextmem = 0
while (getline <tempfile > 0) {

if ($2 1- /A[0-9)*$/) # if symbolic addr,
S2 = symtab[$2) # replace by numeric value

mem[nextmem++] = 1000 * op[$1] + $2 #pack into word

for (i = 0; i < nextmem; i++) # new: print memory
printf("%3d: %0Sd %s'n", i, mem[i], input[i]) #new

Exercise 6-6. It's surprisingly difficult to find some simple modification of graph to do
this, because knowledge of x and y is embedded throughout the program, and in many
variables like bticks and 1 ticks. Perhaps more fruitful is to define a filter
transpose that processes the input. Here is one, obtained by editing graph to take
the appropriate action for each kind of line.

204 ANSWERS TO SELECTED EXERCISES APPENDIX 8

transpose - input and output suitable for graph
input: data and specification of a graph
output: data and specification for the transposed graph

BEGIN {
number = 11 "[-+]?([0-9]+[.]?[0-9]*: [.][0-9]+) 11

\

"([eE][-+]?[0-9]+)?$ 11

}
$1 == c•bottom" &.&. $2 "ticks" { # ticks for x-axis

$1 = 11 left"
print
next

}
$1 == c•left" &.&. $2 11 ticks" { # ticks for y-axis

$1 = "bottom"
print
next

}

$1 == "range" # xmin ymin xmax ymax
print $1, $3, $2, $5, $4
next

}

$1 == "height" { $1 11width"; print; next }
$1 == c•width" { $1 "height"; print; next }
$1 - number&.&. $2 - number { nd++; print $2, $1, $3; next }
$1 - number &.&. $2 1- number { # single number:

nd++ # count data points
print $1, nd, $2 # fill in both x andy
next

print }

A simple version of logarithmic axes could be done the same way. D

Exercise 6-13. These are all just additional cases in the large if statement. For
instance,

else if ($i == "pi")
stack[++top] = 3.14159265358979

D

Exercise 7-1. The condition A[i] > A[i+1] is essentially the invariant that is enforced
by the algorithm, so it should be true automatically. The real problem is that check
doesn't check that the output is a permutation of the input: it won't notice if elements
are moved outside of the proper array bounds. D

Exercise 7-3. As described briefly in Chapter 8, awk uses a hash table to store arrays.
These hash tables allow constant-time lookup of elements in small arrays, but take more
time as the arrays grow. D

Exercise 7-8. The END action inserted by makeprof is executed after any other END's
that might be present, so an exit in an earlier END would stop the program. A partial
fix is to change makeprof to print its END action before anything else. D

Exercise 7-10. Again, push the nodes onto a stack instead of printing them, then print
the stack from the bottom after the end of the input. Alternatively, reverse the roles of
$1 and $2, either in rtsort or by a separate program. D

&.&. AND operator 10, 31, 37, 158
"" assignment operator 38
•= assignment operator 38
+=asSignment operator 38
-= assignment operator 38
I= assignment operator 38
A"' assignment operator 38
.. assignment operator 38, 44
\ backslash 28, 30, 41, 43
{ ... } braces 15, 22, 41, 167, 188
I comment 15, 22, 188
> comparison operator 9
> = comparison operator 9
==comparison operator 9, 44
? : conditional expression 37, 68
,. continuation after 22, 188
--decrement operator 39, 70,

112
A exponentiation operator 15, 36,

46
" format conversion 42, 189
- in character class 29
"" in print£ 79
& in substitution 43, 72, 189
++ increment operator 39, 146,

158
: input pipe 62, 76
·match operator 25, 27, 31, 37,

40
1- nonmatch operator 25, 27, 31,

37,40
I NOT operator 10, 31, 37
:I OR operator 10, 31, 37
> output redirection 56, 58, 188
» output redirection 56, 58, 188
I output redirection 58, 188
'• quotes 2, 4·5, 65, 100
• regular expression 28
s regular expression 28, 119
A regular expression 28, 119
() regular expression 29
l... I regular expression 29
[" ...) regular expression 29
: regular expression 29, 32
• regular expression 30
+ regular expression 30
? regular expression 30
" remainder operator 36, 46
- standard input filename 64,

116
• ... • string constant 7, 24, 35, 51

underscore 35

SO at end of input 13
SO blank line 192
SO record variable 5, 35
SO, side-effects on 36, 43
\007 bell character 31
\b backspace character 31
/dev/tty file 59
-f option 4-5, 63, 65, 187
-F option 60, 63, 187
>file, print 90, 188
#include processor 62, 64
Sn field 5, 35
\n newline character 8, 31, 79
r, computation of 39
\ t tab character 15, 24, 31
Sx++ versus S(x++) 146

action, default 5, 9, 21, 187
actions, summary of 34, 188
add checks and deposits 87
addcomma program 72, 194
address list 82
address list, sorting 84
aggregation 51, 58, 119
Abo, A. V. 130, 152, 179, 186
Abo, S. vi
Akkerhuis, J. vi
algorithm, depth-first search 172,

177
algorithm, heapsort 162
algorithm, insertion sort 153
algorithm, linear 157, 183
algorithm, make update 176
algorithm, n log n 162, 165
algorithm, quadratic 157, 162,

183
algorithm, quicksort 160
algorithm, topological sort 171
AND operator,&.&. 10, 31, 37,

158
ARGC variable 36, 63, 189
arguments, command-line 63
arguments, function 54
ARGV, changing 64·65, 116
ARGV variable 36, 63-65, 116,

189
arith program 117
arithmetic expression grammar

145
arithmetic functions, summary of

190
arithmetic functions, table of 39

205

INDEX

arithmetic operators 36, 44
arithmetic operators, table of 46
array, associative 50·51, 193
array parameter 54
array reference, cost of 184, 204
array subscripts S0-52
arrays 16, 50
arrays, multidimensional 52, 108,

114, 116, 182
asm program 134, 203
aspli t function 81
assembler instructions, table of

132
assembly language 133
assignment, command-line 63, 94,

187, 195, 197
assignment expression 39, 127
assignment, multiple 39
assignment operator,""" 38
assignment operator, •"" 38
assignment operator, +"" 38
assignment operator, -"" 38
assignment operator, /:;: 38
assignment operator, "= 38.
assignment operator, = 38, 44
assignment operators 38
assignment, side-effects of 43
associative array 50-51, 193
associativity of operators 46
atan2 function 39
attribute, database 103
avoiding sort options 91, 140
awk command line I, 3, 63, 65,

187
awk grammar 148
awk program, form of 2, 21, 187
awk program, running an 3
awk programs, running time of

183
awk. parser program 149

back edge 173-174
backs1ash, \ 28, 30, 41, 43
backspace character, \b 31
bailing out 4
balanced delimiters 77, 195
base table I 06
batch sort test program 155
BEGIN and END, multiple 23, 169
BEGIN pattern II, 23, 63
bell character, \007 31
Bentley, J. L. vi, 130, 152, 179

206 THE A WK PROGRAMMING LANGUAGE

binary tree 163
blank line, SO 192
blank line, printing a II, 55
blank line separator 83
boundary condition testing I 55
braces, { ... } 15, 22, 47, 167, 188
breadth-first order 163, 171
break statement 49
bridge program 199
built-in variables, table of 36
bundle program 81

calc 1 program 143
calc2 program 144
calc3 program 146
call by reference 54
call by value 54
capitals file 102
cat command 59, 64
cc command 175
changing ARGV 64-65, 116
character class, - in 29
character class, complemented 29
character class, regular expression

29
characters, table of escape 31
check function I 55
chcc::k password file 78
check 1 program 87
check2 program 87
check3 program 88
checkgen program 79
chcc::king, cross-reference 73
chcc::ks and deposits, add 87
chcc::ks, printing 74
Cherry, L. L. vi
chmod command 65
choose function 112
cliche program 113
close statement 59, 82
coercion 44, 1 54, 182
coercion, number to string 25
coercion rules 44, 192
coercion, string to number 25
coercion to number 45
coercion to string 45
colcheck pro,ram 77
columns, summmg 67
command, cat 59,64
command, cc 175
command, chmod 65
command, date 62, 76
command, egrep 59, 181, 184,

186
command, grep v, 181, 184
command interpreter, shell 4, 65,

99
command, join 104
command line, awk I, 3, 63, 65,

187
command, lorder 170
command, ls 177
command, make 175
command, nm 73
command, pr 175
command, ptx 123
command, sed v, 181, 184, 186
command, sort 8, 58, 84, 90
command, tbl 95
command, tr 201
command, troff 120, 124-125,

127, 139
command, we 183

command, who 62
command-line arguments 63
command-line assignment 63, 94,

187, 195, 197
commas, inserting 71
comment, # I 5, 22, 188
comparison expression, value of

37
comparison, numeric 25-26, 44
comparison operator, > 9
comparison operator, >"' 9
comparison operator, ::::: 9, 44
comparison operators 36
comparison operators, table of 25
comparison, string 25-26, 44, 184
compat program 80
compiler model 131
complemented character class 29
compound patterns 31
computation of basc-10 logarithm

39
computation of e 39
computation of 1r 39
concatenation in regular

expression 29
concatenation operator 40, 43,

182
concatenation, string 13, 40, 43,

47, 56, 101, 182, 184
conditional expression, ? : 37, 68
constant, • .. .- string 7, 24, 35, 51
constant, numeric:: 35
constraint graph 170
context-free grammar 113, 145,

148
continuation after , 22, 188
continue statement 49
continuing long statements 15,

22, 188
control-break program 92, 95,

105, 110, 126
control-flow statements, summary

of 48
conversion, " format 42, 189
conversion, date 72, 194
conversion, number to string 35,

44, 192
conversion, string to number 35,

44, 192
convert numbers to words 76
cos function 39
cost of array reference 184, 204
countries file 22
Cowlisbaw, M. F. 186
cross-reference c::bcc::king 73
cross-references in manuscripts

120
cycle, graph 171, 173-174, 177

Dallen, J. A. 152
data, name-value 86
data, regular expressions in 118
data, self-identifying 86
data structure, successor-list 171
data types 5
data validation 10, 76
database attribute 103
database description, relfile

106
database, multifile 102
database query 99
database table 103
databases, relational iv, 102

INDEX

date command 62,76
date conversion 72, 194
dates, sorting 72
daynum function 194
dcc::rcment operator, -- 39, 70,

112
default action 5, 9, 21, 187
default field separator 5, 24
default initialization 12-13, 35,

38, 45, 50-51' 54, 68, 181
delete statement 52
delimiters, balanced 77, 195
dependency description,

makefile 175
dependency graph 176
depth-first search algorithm 172,

177
derived table 106
df s function 173
divide and conquer v, 89, 110,

121, 123-124, 130, 160, 184,
202

do statement 49
dynamic regular expression 40,

101, 184

e, computation of 39
echo program 63
egrep command 59, 181, 184,

186
else, semicolon before 47
emp.data file 1
empty statement 50, 188
END, multiple BEGIN and 23, 169
end of input, SO at 13
END pattern 11, 23, 49
error file, standard 59
error function 118, 149, 178
error messages, printing 59
error, syntax 4
escape sequence 31, 35, 191
escape sequences, table of 31
examples, regular expression 30
examples, table of print£ 57
excc::utable file 65
exit statement 49
exit status 50, 64
exp function 39
exponential notation 35
exponentiation operator, " 15, 36,

46
expression, ? : conditional 37, 68
expression, assignment 39, 127
expression grammar 145
expression, value of comparison

37
expression, value of logical 37
expressions, field 36
expressions, primary 34
expressions, summary of 37

Feldman, S. I. 179
field expressions 36
field, Sn 5, 35
field, nonexistent 36, 45, 192
field program 66
field separator, default 5, 24
field separator, input 24, 35, 39,

60
field separator, newline as 61,

83-84
field separator, output 6, 35, 39,

55-56

THE A WK PROGRAMMING LANGUAGE

field separator, regular expression
52, 60, 80, 135

field variables 35
fields, named I 02, I 07
file, capi tala 102
file, countries 22
file, /dev/tty 59
file, emp.data I
file, executable 65
file, standard error 59
file, standard input 59, 66
file, standard output 5, 56
file updating 175
filename, - standard input 64,

116
FILENAME variable 33, 35-36,

81, 103
fixed-field input 72
floating-point number, regular

expression for 30, 40
floating-point precision 35, 191
Floyd, R. W. 162, 198
fmt program 120
fmt. just program 202
FNR variable 33, 35-36, 61
for ... in statement 51
for(;;) infinite loop 49, 113
for statement 16, 49
form letters 1 00
form of awk program 2, 21, 187
form1 program 91
form2 program 92
form3 program 94
form4 program 96
formal parameters 54
format, program II, 22, 34, 47,

53, 188
formatting, table 95
form.gen program 101
Forth language 142
Fraser, C. W. vi
FS variable 24, 35-36, 52, 60, 83,

135, 187
function arguments 54
function, aspli t 81
function, atan2 39
function, check I 55
function, choose 112
function, cos 39
function, daynum 194
function definition 53, 187
function, dfs 173
function~ error 118, 149, 178
function, exp 39
function, getline 61, 182, 188
function, gsub 42, 71, 101, 119,

122, 182
function, heapify 163, 165
function, hsort 165
function, index 41
function, int 39-40
function, isort 154
function, length 13-14
function, log 39
function, match 35, 41, 149, 182,

189, 196
function, max 53
function, numtowords 76, 194
function, permute 199
function, prefix lOS
function, qsort 161
function, rand 40, Ill
function, randint Ill

function, randlet 112
function, recursive 54, 71, 76,

liS, 160
function, sin 39
function, split 41, 52-53, 76,

80, 84, 192
function, sprint£ 42, 76, 88,

189
function, sqrt 39
function, srand 40, Ill
function, sub 42, 182
function, subset 109
function, substr 43, 72
function, suffix lOS
function, system 59, 64
function, unget 1 OS
function with counters, isort

158
functions, summary of arithmetic

190
functions, summary of string 190
functions, table of arithmetic 39
functions, table of string 42
functions, user-defined 53, 182,

187

generation, program v, 79, 121,
167

generator, lex lexical analyzer
152, 181, 186

generator, yacc parser 152, 175
getline error return 61-62
getline forms, table of 62
getline function 61, 182, 188
getline, side-effects of 61
global variables 54, 116
grammar, arithmetic expression

145
grammar, awk 148
grammar, context-free 113, 145,

148
grap language 139, 152
graph, constraint 170
graph cycle 171, 173-174, 177
graph, dependency 176
graph language 135
graph program 137
grep command v, 181, 184
Griswold, M. 186
Griswold, R. 186
Grosse, E. H. vi
gsub function 42, 71, 101, 119,

122, 182
Gusclla, R. vi

happiness 30
Hardin, R. H. 130
headers, records with 85
heapify function 163, 165
heapsort algorithm 162
heapsort performance 165
heapsort, profiling 168-169
Herbst, R. T. vi
histogram program 70, 193
Hoare, C. A. R. 160
Hopcroft, J. E. 179
hsort function 165

ICON language 186
if-else statement 14, 47
implementation limits 59, 61-62,

191
in operator 52, 192

INDEX 207

increment operator, ++ 39, 146,
158

index function 41
index, KWIC 122
indexing 124
indexing pipeline 129
infinite loop, for (; ;) 49, 113
infix notation 142, 145
info program 100
initialization, default 12-13, 35,

38, 45, S0-51, 54, 68, 181
initializing rand 111
input field separator 24, 35, 39,

60
input file, standard 59, 66
input filename, - standard 64,

116
input, fixed-field 72
input line SO S
input pipe, I 62, 76
input push back lOS, II 0
input, side-effects of 35
input-output, summary of 188
inserting commas 71
insertion sort algorithm I 53
insertion sort performance I 58
int function 39-40
integer, rounding to nearest 40
interactive test program 157
interactive testing I 56
interest program 1 S
isort function 154
isort function with counters

158
ix.collapse program 126
ix. format program 129
ix. 9enkey program 128
ix. rotate program 127
ix. sort 1 program 126
ix. sort2 program 128

join command 104
join, natural 103
join program 104
justification, text 98, 201

Kernighan, B. W. 66, 130, 152,
186

Kernighan, M. D. vi
Knuth, Donald Ervin 82, 179,

198
KWIC index 122
kwic program 123, 203

language, assembly 133
language features, new v, 79, 182
language, Forth 142
language, grap 139, 152
language, graph 135
language, ICON 186
language, pattern-directed 138,

140, 152, 156, 181
language, pic 139
language, Postscript 142
language processor model 131
language, q query 102, 107
language, query 99
language, REXX 186
language, SNOBOL4 SO, 182,

186
language, sortqen 140
leap year computation 194
leftmost longest match 42, 60, 80

208 THE A WK PROGRAMMING LANGUAGE

length function 13-14
letters, form I 00
lex lexical analyzer generator

152, 181, 186
lexical analysis 131, 133
limits, implementation 59, 61-62,

191
Linderman, J.P. vi
linear algorithm 157, 183
linear order 170
lines versus records 21, 60
little languages iv-v, 131, 152,

156, 159
local variables 54, 116, 182
log function 39
logarithm, computation of base-10

39
logical expression, value of 37
logical operators 10, 31, 37
logical operators, precedence of

32
long statements, continuing 15,

22, 188
lorder command 170
ls command 177
Lukasiewicz, J. 142

machine dependency 35-36,44-
45, 51, 183

make command 175
make program 178
make update algorithm 176
makefile dependency

description 175
makeprof program 167
manuscripts, cross-references in

120
Martin, R. L. vi
match function 35, 41, 149, 182,

189, 196
match, leftmost longest 42, 60, 80
match operator, - 25, 27, 31, 37,

40
max function 53
Mcilroy, M. D. vi, 130
metacharacters, regular expression

28, 191
Miller, W. 179
model, language processor 131
Moscovitz, H. S. vi
MS-DOS vi, 26
multidimensional arrays 52, 108,

114, 116, 182
multifile database 102
multiline records iv, 60·61, 82
multiple assignment 39
multiple BEGIN and END 23, 169
Myers, E. 179

n log n algorithm 162, 165
named fields I 02, I 07
names, rules for variable 35
name-value data 86
natural join 103
new language features v, 79, 182
newline as field separator 61,

83-84
newline character, \n 8, 31, 79
next statement 49
NF, side-effects on 36, 61
NF variable 6, 14, 35·36, 61
nm command 73
nm.format program 74

nonexistent field 36, 45, 192
nonmatch operator, 1- 25, 27,

31, 37,40
nonterminal symbol 113, 145
NOT operator, I 10, 31, 37
notation, exponential 35
notation, infix 142, 145
notation, reverse-Polish 142
NR variable 6, 12, 14, 35-36, 61
null string 13, 24, 42, 114, 192
number, coercion to 45
number or string 44
number, regular expression for

floating-point 30, 40
number to string coercion 25
number to string conversion 35,

44, 192
numbers to words, convert 76
numeric comparison 25-26, 44
numeric constant 35
numeric subscripts 52
numeric value of a string 45
numeric variables 44
nwntowords function 76, 194

OFMT variable 36, 45
OFS variable 35·36, 43, 55-56
one-liners 17, 181
operator,&&. AND 10, 31, 37,

158
operator, ""'assignment 38
operator, *"'assignment 38
operator, +"'assignment 38
operator, -a assignment 38
operator, /::assignment 38
operator, "c assignment 38
operator, .. assignment 38, 44
operator, >comparison 9
operator, >"' comparison 9
operator, "'"'comparison 9, 44
operator, -- decrement 39, 70,

112
operator, " exponentiation 15, 36,

46
operator, ++increment 39, 146,

158
operator, - match 25, 27, 31, 37,

40
operator, t- nonmatch 25, 27,

31, 37,40
operator, I NOT 10, 31, 37
operator, ::OR 10, 31, 37
operator, " remainder 36, 46
operator, concatenation 40, 43,

182
operator, in 52, 192
operators, arithmetic 36, 44
operators, assignment 38
operators, associativity of 46
operators, comparison 36
operators, logical 10, 31, 37
operators, precedence of 46
operators, precedence of regular

expression 30
operators, relational 25, 37
operators, summary of 190
operators, table of arithmetic 46
operators, table of comparison 25
option, -f 4-5, 63, 65, 187
option, -F 60, 63, 187
OR operator, II 10, 31, 37
ORS variable 36, 55-56, 83
output field separator 6, 35, 39,

55-56

output file, standard 5, 56
outp11t into pipes 8, 58

INDEX

output record separator 6, 55-56,
83

output redirection, > 56, 58, 188
output redirection, » 56, 58, 188
output redirection, I 58, 188
output statements, summary of

55

p 12check program 77
parameter, array 54
parameter list 53, 116
parameter, scalar 54
parameters, formal 54
parenthesis-free notation 142
Parnas, D. L. 123, 130
parser generator. yacc 152, 175
parsing, recursive-descent 145,

147-148
partial order 170
partitioning step, quicksort 160
passwd program 78
password file, check 78
pattern, BEGIN ll, 23, 63
pattern, END II, 23,49
pattern, range 32, 85, 187
pattern, string-matching 26
pattern-action cycle 3, 21
pattern-action statement iii, 2,

21, 34, 53, 187
pattern-directed language 138,

140, 152, 156, 181
patterns, compound 31
patterns, summary of 23, 187
patterns, summary of string-

matching 27
patterns, table of 33
percent program 70
performance, heapsort 165
performance, insertion sort 1 58
performance measurements, table

of 183
performance, quicksort 162
permute function 199
pic language 139
Pike, R. 66
pipe, I input 62, 76
pipeline, indexing 129
pipes, output into 8, 58
Poage, J. 186
Polish notation 142
Polonsky, I. 186
Postscript language 142
pr command 175
prchecks program 7 5
precedence of logical operators 32
precedence of operators 46
precedence of regular expression

operators 30
precis1on, floating-point 35, 191
predecessor node 170
prefix function 105
prep 1 program 90
prep2 program 91
prep3 program 93
primary expressions 34
print >file 90, 188
print statement 5, 55
print£, "" in 79
print£ examples, table of 57
print£ specifications, summary

of 189

THE A WK PROGRAMMING LANGUAGE

printf specifications, table of
51

printf statement 7, 24, 56, 98
printing a blank line II, 55
printing checks 74
printing error messages 59
printprof program 168
priority queue 162
processor, #include 62, 64
profiling 167
profiling heapsort 168-169
program, addcomma 72, 194
program, ari th 117
program, asm 134, 203
program, a wit. parser 149
program, batch sort test I 55
program, bridge 199
program, bundle 81
program, calc1 143
program, calc2 144
program, calc3 146
program, check 1 87
program, checlt2 87
program, checlt3 88
program, checkgen 79
program, cliche 113
program, colcheck 77
program, compat 80
program, echo 63
program, field 66
program, fmt 120
program, fmt. just 202
program, form1 91
program, form2 92
program, form3 94
program, form4 96
program format II, 22, 34, 47,

53, 188
program, form.gen 101
program generation v, 79, 121,

167
program, graph 137
program, histogram 70, 193
program, info 100
program, interest I 5
program, ix. collapse 126
program, ix.format 129
program, ix. genkey 128
program, ix.rotate 127
program, ix. sort 1 126
program, ix. sort2 128
program, join I 04
program, kwic 123, 203
program, make 178
program, makeprof 167
program, nm. format 74
program, p 12check 77
program, passwd 78
program, percent 70
program, prchecks 75
program, prep 1 90
program, prep2 91
program, prep3 93
program, printprof 168
program, qawlt 109
program, quiz 118
program, rtsort 174
program, sentgen II 5, 200·201
program, seq 64
program, sortgen 141
program, sum 1 68
program, sum2 68
program, sum3 69

program, sumcomma 71
program, table 98
program, table1 196
program, test framework I 59
program, transpose 204
program, tsort 172
program, unbundle 82
program, word count 14, 119
program, wordfreq 119
program, xref 122
prompt character 2
prototyping iii, v, 78, I 52, 185
pseudo-code iv, 153
ptx command 123
pushback, input 105, 110

q query language I 02, I 07
qawk program I 09
qawlt query processor 108
qsort function 161
quadratic algorithm I 57, 162,

183
query language 99
queue 171
queue, priority 162
quicksort algorithm 160
quicksort partitioning step 160
quicksort performance 162
quiz program 118
quotes, '' 2, 4-5, 65, 100
quoting in regular expressions

29-30, 41, 43

rand function 40, Ill
rand, initializing Ill
randint function Ill
randlet function 112
random sentences 113
range pattern 32, 85, 187
record separator, output 6, 55·56,

83
record variable, $0 5, 35
records, lines versus 21, 60
records, multiline iv, 60-61, 82
records with headers 85
recursion elimination 200, 204
recursive function 54, 71, 76, liS,

160
recursive-descent parsing 145,

147-148
redirection, > output 56, 58, 188
redirection, » output 56, 58, 188
redirection, I output 58, 188
regular expression, . 28
regular expression, $ 28, 119
regular expression, A 28, 119
regular expression, () 29
regular expression, [. . .] 29
regular expression, r .. .J 29
regular expression, I 29, 32
regular expression, • 30
regular expression, + 30
regular expression, ? 30
regular expression character class

29
regular expression, concatenation

in 29
regular expression, dynamic 40,

101, 184
regular expression examples 30
regular expression field separator

52, 60, so. 135
regular expression for floating

point number 30, 40

INDEX 209

regular expression metacharacters
28, 191

regular expression operators,
precedence of 30

regular expressions in data 118
regular expressions, quoting in

29-30, 41, 43
regular expressions, strings as 40
regular expressions, summary of

28, 191
regular expressions, table of 32
relation, universal 107
relational databases iv, 102
relational operators 25, 37
relfile database description

106
remainder operator, " 36, 46
report generation 89
return statement 53
reverse input line order 50
reverse program 16-17
reverse-Polish notation 142
REXX language 186
Ritchie, D. M. 66, 186
RLENGTH variable 35-36, 41
rounding to nearest integer 40
RS variable 36, 60, 83-84
RSTART variable 35-36, 41, 189
rtsort program 174
rules for variable names 35
running an awk program 3
running time of awk programs

183

scaffolding 153, 156, 179
scalar parameter 54
Schmitt, G. vi
scientific notation 35
Scribe formatter 124
sed command v, 181, 184, 186
self-identifying data 86
semicolon II, 22, 34, 47, 53, 187
semicolon as empty statement 50
semicolon before else 47
sentence generation 114
sentences, random 113
sentgen program II 5, 200·201
separator, blank line 83
separator, default field 5, 24
separator, input field 24, 35, 39,

60
separator, output field 6, 35, 39,

55-56
separator, output record 6, 55·56,

83
seq program 64
Sethi, R. 130, 152, 186
shell command interpreter 4, 65,

99
side-effects of assignment 43
side-effects of getline 61
side-effects of input 35
side-effects of sub 43
side-effects of test 52, 192
side-effects on SO 36, 43
side-effects on NF 36, 61
sin function 39
SNOBOL41anguage 50, 182, 186
sort command 8, 58, 84, 90
sort key 91, 127, 140
sort options 90, 94, 124, 126,

140
sort options, avoiding 91, 140

210 THE A WK PROGRAMMING LANGUAGE

sort programs, testing 155
sort test program, batch 155
sortgen language 140
sortgen program 141
sorting address list 84
sorting dates 72
sorting, topological 170
split function 41, 52-53, 76,

80, 84, 192
sprint£ function 42, 76, 88,

189
sqrt function 39
srand function 40, Ill
stack 142, 200, 204
standard error file 59
standard input file 59, 66
standard input filename, - 64,

116
standard output file 5, 56
statement, break 49
statement, close 59, 82
statement, continue 49
statement, delete 52
statement, do 49
statement, empty 50, 188
statement, exit 49
statement, for 16, 49
statement, for ... in 51
statement, if-else 14, 47
statement, next 49
statement, pattern-action iii, 2,

21, 34, 53, 187
statement, print 5, 55
statement, print£ 7, 24, 56,98
statement, return 53
statement, while 15, 47
statements, continuing long I 5,

22, 188
statements, summary of control

flow 48
statements, summary of output

55
status return 50, 64
string, coercion to 45
string comparison 25-26, 44, 184
string concatenation 13, 40, 43,

47, 56, 101, 182, 184
string constant, " ... • 7, 24, 35, 51
string functions, summary of 190
string functions, table of 42
string, null 13, 24, 42, 114, 192
string, numeric value of a 45
string or number 44
string to number coercion 25
string to number conversion 35,

44,192
string variables 12, 44
string-matching pattern 26
string-matching patterns,

summary of 27
strings as regular expressions 40
sub function 42, 182
sub, side-effects of 43
subscripts, array 50·52
subscripts, numeric 52
SUBSEP variable 36, 53
subset function 109
substitution, &. in 43, 72, 189
substr function 43, 72
substring 24
successor node 170
successor-list data structure 171
suffix function 105

sum 1 program 68
sum2 program 68
sum3 program 69
sumcomma program 71
summary of actions 34, 188
summary of arithmetic functions

190
summary of control-flow

statements 48
summary of expressions 37
summary of input-output 188
summary of operators 190
summary of output statements 55
summary of patterns 23, 187
summary of print£

specifications 189
summary of regular expressions

28, 191
summary of string functions 190
summary of string-matching

patterns 27
summing columns 67
Swartwout, D. vi
symbol table 131, 134, 152
syntax error 4
system function 59,64

tab character, \t 15, 24, 31
table, base 106
table, database 103
table, derived 1 06
table formatting 95
table of arithmetic functions 39
table of arithmetic operators 46
table of assembler instructions

132
table of built-in variables 36
table of comparison operators 25
table of escape sequences 31
table of getline forms 62
table of patterns 33
table of performance

measurements 183
table of print£ examples 57
table of print£ specifications 57
table of regular expressions 32
table of string functions 42
table program 98
table, symbol 131, 134, 152
table 1 program 196
tbl command 95
terminal symbol 113, 145
test framework program 159
test program, interactive 157
test, side-effects of 52, 192
testing, boundary condition 155
testing, interactive 156
testing sort programs 155
TEX formatter 120, 124
text justification 98, 201
timing tests 183
Toolchest vi
topological sort algorithm 171
topological sorting 170
tr command 201
translator model 131
transpose program 204
tree, binary 163
Trickey, H. W. vi
troff command 120, 124-125,

127, 139
tsort program 172

INDEX

Ullman, J. D. Ito, 152, 179
unbundle program 82
underscore, 35
unget funcfion 105
uninitialized variables 5 I, 58
universal relation I 07
update algorithm, make 176
updating, file 175
user-defined functions 53, 182,

187

value of a string, numeric 45
value of comparison expression

37
value of logical expression 37
van Eick, P. vi
Van Wyk, C. J. vi
variable, SO record 5, 35
variable, ARGC 36, 63, 189
variable, ARGV 36, 63-65, 116,

189
variable assignment, command

line 63
variable, FILENAME 33, 35·36,

81, 103
variable, FNR 33, 35-36, 61
variable, FS 24, 35-36, 52, 60, 83,

135, 187
variable names, rules for 35
variable, NF 6, 14, 35-36, 61
variable, NR 6, 12, 14, 35-36, 61
variable, OFMT 36, 45
variable, OFS 35-36, 43, 55-56
variable, ORS 36, 55-56, 83
variable, RLENGTH 35-36, 41
variable, RS 36, 60, 83-84
variable, RSTART 35-36,41, 189
variable, SUBSEP 36, 53
variables, field 35
variables, global 54, 116
variables, local 54, 116, 182
variables, numeric 44
variables, string 12, 44
variables, table of built-in 36
variables, uninitialized 51, 58

we command 183
while statement 15,47
who command 62
wild-card characters 26
Williams, J. W. J. 162
word count program 14, 119
wordfreq program 119
words, convert numbers to 76

xref program 122

yacc parser generator 152, 175
Yannakakis, M. vi

Please send me information about how to obtain source code or software for the
AWK programming language for the following environment:

0 UNIX
0 MS-DOS
0 Other Please specify--------------------
Name __________________________ __

Affiliation __________________________ _

StreetAddr~s--------------------------
City __________________ State ___ Zip ___ _

Telephone Hours----------

A
~

Addison-W~ley Publishing Company
Reading, Massachusetts 01867

(617) 944-3700

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 11 READING, MA.

Postage Will Be Paid By Addressee

ADDISON-WESLEY
PUBLISHING COMPANY, INC.
Attn: D. Descoteaux
Reading, Massachusetts U.S.A. 01867-9984

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

TheA WK.
Programming~

Language
ALFRED v AHO . BRIAN w KERNIGHAN • PETER J. WEINBERGER

AT&T Bell Laboratories

O riginally developed by Alfred Aho, Brian Kernighan, and Peter
Weinberger in 1977, AWK is a pattern-matching language for writing
short programs to perform common data-manipulation tasks. In 1985,
a new version of the language was developed, incorporating additional
features such as multiple input files, dynamic regular expressions, and
user-defined functions. This new version is available for both UNIX
and MS-DOS.

This is the first book on AWK.It begins with a tutorial that shows how
easy AWK is to use. The tutorial is followed by a comprehensive man
ual for the new version of AWK.

Subsequent chapters illustrate the language by a range of useful appli
cations, such as:

• Retrieving, transforming, reducing, and validating data
• Managing small , personal databases
• Text processing
• Littlelanguages
• Experimenting with algorithms

The examples illustrate the book's three themes: showing how to
use AWK well, demonstrating AWK's versatility, and explaining how
common computing operations are done. In addition, the book con
tains two appendixes: a summary of the language, and answers to
selected exercises.

PA 1529

ISBN 0-201- 07981-X
Addison-Wesley Publishing Company

	Front Cover
	Preface
	Contents
	Chapter 1 An AWK Tutorial
	Chapter 2 The AWK Language
	Chapter 3 Data Processing
	Chapter 4 Reports and Databases
	Chapter 5 Processing Words
	Chapter 6 Little Languages
	Chapter 7 Experiments with Algorithms
	Chapter 8 Epliog
	Appendix A AWK Summary
	Appendix B Answers to Selected Exercises
	Index
	Back Cover

