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1. Introduction 
Google has been a phenomenally successful company . As well as the success of Google              
Search and AdWords, Google has delivered many other stand-out products, including Google            
Maps, Google News, Google Translate, Google speech recognition, Chrome, and Android.           
Google has also greatly enhanced and scaled many products that were acquired by purchasing              
smaller companies, such as YouTube, and has made significant contributions to a wide variety              
of open-source projects. And Google has demonstrated some amazing products that are yet to              
launch, such as self-driving cars. 
 
There are many reasons for Google’s success, including enlightened leadership, great people, a             
high hiring bar, and the financial strength that comes from successfully taking advantage of an               
early lead in a very rapidly growing market. But one of these reasons is that Google has                 
developed excellent software engineering practices , which have helped it to succeed. These            
practices have evolved over time based on the accumulated and distilled wisdom of many of the                
most talented software engineers on the planet. We would like to share knowledge of our               
practices with the world, and to share some of the lessons that we have learned from our                 
mistakes along the way. 
  
The aim of this paper is to catalogue and briefly describe Google’s key software              
engineering practices. Other organizations and individuals can then compare and contrast           
these with their own software engineering practices, and consider whether to apply some of              
these practices themselves. 
 
Many authors (e.g. [9], [10], [11]) have written books or articles analyzing Google’s success and               
history. But most of those have dealt mainly with business, management, and culture; only a               
fraction of those (e.g. [1, 2, 3, 4, 5, 6, 7, 13, 14, 16, 21]) have explored the software engineering                    
side of things, and most explore only a single aspect; and none of them provide a brief written                  
overview of software engineering practices at Google as a whole, as this paper aims to do. 

2. Software development 

2.1. The Source Repository 
Most of Google’s code is stored in a single unified source-code repository, and is              
accessible to all software engineers at Google . There are some notable exceptions,            
particularly the two large open-source projects Chrome and Android, which use separate            
open-source repositories, and some high-value or security-critical pieces of code for which read             
access is locked down more tightly. But most Google projects share the same repository. As of                
January 2015, this 86 terabyte repository contained a billion files, including over 9 million source               
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code files containing a total of 2 billion lines of source code , with a history of 35 million                  
commits and a change rate of 40 thousand commits per work day [18]. Write access to the                 
repository is controlled: only the listed owners of each subtree of the repository can approve               
changes to that subtree. But generally any engineer can access any piece of code, can check it                 
out and build it, can make local modifications, can test them, and can send changes for review                 
by the code owners, and if an owner approves, can check in (commit) those changes.               
Culturally, engineers are encouraged to fix anything that they see is broken and know how to fix,                 
regardless of project boundaries. This empowers engineers and leads to higher-quality           
infrastructure that better meets the needs of those using it. 
 
Almost all development occurs at the “head” of the repository , not on branches. This helps               
identify integration problems early and minimizes the amount of merging work needed. It also              
makes it much easier and faster to push out security fixes. 
 
Automated systems run tests frequently, often after every change to any file in the transitive               
dependencies of the test, although this is not always feasible. These systems automatically             
notify the author and reviewers of any change for which the tests failed, typically within a few                 
minutes. Most teams make the current status of their build very conspicuous by installing              
prominent displays or even sculptures with color-coded lights (green for building successfully            
and all tests passing, red for some tests failing, black for broken build). This helps to focus                 
engineers’ attention on keeping the build green. Most larger teams also have a “build cop” who                
is responsible for ensuring that the tests continue to pass at head, by working with the authors                 
of the offending changes to quickly fix any problems or to roll back the offending change. (The                 
build cop role is typically rotated among the team or among its more experienced members.)               
This focus on keeping the build green makes development at head practical, even for very large                
teams. 
 
Code ownership. Each subtree of the repository can have a file listing the user ids of the                 
“owners” of that subtree. Subdirectories also inherit owners from their parent directories,            
although that can be optionally suppressed. The owners of each subtree control write access to               
that subtree, as described in the code review section below. Each subtree is required to have at                 
least two owners, although typically there are more, especially in geographically distributed            
teams. It is common for the whole team to be listed in the owners file. Changes to a subtree                   
can be made by anyone at Google, not just the owners, but must be approved by an owner.                  
This ensures that every change is reviewed by an engineer who understands the software being               
modified. 
 
For more on the source code repository at Google, see [17, 18, 21]; and for how another large                  
company deals with the same challenge, see [19]. 

2.2. The Build System 
Google uses a distributed build system known as Blaze, which is responsible for compiling and               
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linking software and for running tests. It provides standard commands for building and testing              
software that work across the whole repository. These standard commands and the highly             
optimized implementation mean that it is typically very simple and quick for any Google              
engineer to build and test any software in the repository. This consistency is a key enabler                
which helps to make it practical for engineers to make changes across project boundaries. 
 
Programmers write “BUILD” files that Blaze uses to determine how to build their software. 
Build entities such as libraries, programs, and tests are declared using fairly high-level             
declarative build specifications that specify, for each entity, its name, its source files, and the               
libraries or other build entities that it depends on. These build specifications are comprised of               
declarations called “build rules” that each specify high-level concepts like “here is a C++ library               
with these source files which depends on these other libraries”, and it is up to the build system                  
to map each build rule to a set of build steps, e.g. steps for compiling each source file and steps                    
for linking, and for determining which compiler and compilation flags to use. 
 
In some cases, notably Go programs, build files can be generated (and updated) automatically,              
since the dependency information in the BUILD files is (often) an abstraction of the dependency               
information in the source files. But they are nevertheless checked in to the repository. This               
ensures that the build system can quickly determine dependencies by analyzing only the build              
files rather than the source files, and it avoids excessive coupling between the build system and                
compilers or analysis tools for the many different programming languages supported. 
 
The build system’s implementation uses Google’s distributed computing infrastructure. The work           
of each build is typically distributed across hundreds or even thousands of machines . This              
makes it possible to build extremely large programs quickly or to run thousands of tests in                
parallel. 
 
Individual build steps must be “hermetic”: they depend only on their declared inputs.             
Enforcing that all dependencies be correctly declared is a consequence of distributing the build:              
only the declared inputs are sent to the machine on which the build step is run. As a result the                    
build system can be relied on to know the true dependencies. Even the compilers that the build                 
system invokes are treated as inputs. 
 
Individual build steps are deterministic. As a consequence, the build system can cache build               
results. Software engineers can sync their workspace back to an old change number and can               
rebuild and will get exactly the same binary. Furthermore, this cache can be safely shared               
between different users. (To make this work properly, we had to eliminate non-determinism in              
the tools invoked by the build, for example by scrubbing out timestamps in the generated output                
files.) 
 
The build system is reliable. The build system tracks dependencies on changes to the build               
rules themselves, and knows to rebuild targets if the action to produce them changed, even if                
the inputs to that action didn’t, for example when only the compiler options changed. It also                
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deals properly with interrupting the build part way, or modifying source files during the build: in                
such cases, you need only rerun the build command. There is never any need to run the                 
equivalent of “make clean”.  
 
Build results are cached “in the cloud”. This includes intermediate results. If another build              
request needs the same results, the build system will automatically reuse them rather than              
rebuilding, even if the request comes from a different user. 
 
Incremental rebuilds are fast. The build system stays resident in memory so that for rebuilds               
it can incrementally analyze just the files that have changed since the last build. 
 
Presubmit checks. Google has tools for automatically running a suite of tests when initiating a               
code review and/or preparing to commit a change to the repository. Each subtree of the               
repository can contain a configuration file which determines which tests to run, and whether to               
run them at code review time, or immediately before submitting, or both. The tests can be either                 
synchronous, i.e. run before sending the change for review and/or before committing the             
change to the repository (good for fast-running tests); or asynchronous, with the results emailed              
to the review discussion thread. [The review thread is the email thread on which the code                
review takes place; all the information in that thread is also displayed in the web-based code                
review tool.] 

2.3. Code Review 
Google has built excellent web-based code review tools , integrated with email, that allow             
authors to request a review, and allows reviewers to view side-by-side diffs (with nice color               
coding) and comment on them. When the author of a change initiates a code review, the                
reviewers are notified by e-mail, with a link to the web review tool’s page for that change. Email                  
notifications are sent when reviewers submit their review comments. In addition, automated            
tools can send notifications, containing for example the results of automated tests or the              
findings of static analysis tools. 
 
All changes to the main source code repository MUST be reviewed by at least one other                
engineer. In addition, if the author of a change is not one of the owners of the files being                   
modified, then at least one of the owners must review and approve the change. 
 
In exceptional cases, an owner of a subtree can check in (commit) an urgent change to that                 
subtree before it is reviewed, but a reviewer must still be named, and the change author and                 
reviewer will get automatically nagged about it until the change has been reviewed and              
approved. In such cases, any modifications needed to address review comments must be done              
in a separate change, since the original change will have already been committed. 
 
Google has tools for automatically suggesting reviewer(s) for a given change, by looking at the               
ownership and authorship of the code being modified, the history of recent reviewers, and the               
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number of pending code reviews for each potential reviewer. At least one of the owners of each                 
subtree which a change affects must review and approve that change. But apart from that, the                
author is free to choose reviewer(s) as they see fit. 
 
One potential issue with code review is that if the reviewers are too slow to respond or are                  
overly reluctant to approve changes, this could potentially slow down development. The fact             
that the code author chooses their reviewers helps avoid such problems, allowing engineers to              
avoid reviewers that might be overly possessive about their code, or to send reviews for simple                
changes to less thorough reviewers and to send reviews for more complex changes to more               
experienced reviewers or to several reviewers. 
 
Code review discussions for each project are automatically copied to a mailing list designated by               
the project maintainers. Anyone is free to comment on any change, regardless of whether they               
were named as a reviewer of that change, both before and after the change is committed. If a                  
bug is discovered, it’s common to track down the change that introduced it and to comment on                 
the original code review thread to point out the mistake so that the original author and reviewers                 
are aware of it. 
 
It is also possible to send code reviews to several reviewers and then to commit the change as                  
soon as one of them has approved (provided either the author or the first responding reviewer is                 
an owner, of course), before the other reviewers have commented, with any subsequent review              
comments being dealt with in follow-up changes. This can reduce the turnaround time for              
reviews. 
 
In addition to the main section of the repository, there is an “experimental” section of the                
repository where the normal code review requirements are not enforced. However, code            
running in production must be in the main section of the repository, and engineers are very                
strongly encouraged to develop code in the main section of the repository, rather than              
developing in experimental and then moving it to the main section, since code review is most                
effective when done as the code is developed rather than afterwards. In practice engineers              
often request code reviews even for code in experimental. 
 
Engineers are encouraged to keep each individual change small, with larger changes            
preferably broken into a series of smaller changes that a reviewer can easily review in one go.                 
This also makes it easier for the author to respond to major changes suggested during the                
review of each piece; very large changes are often too rigid and resist reviewer-suggested              
changes. One way in which keeping changes small is encouraged is that the code review tools                1

label each code review with a description of the size of the change, with changes of 30-99 lines                  
added/deleted/removed being labelled “medium-size” and with changes of above 300 lines           
being labelled with increasingly disparaging labels, e.g. “large” (300-999), “freakin huge”           

1 This has changed somewhat in recent years. More recent versions of the code review tools no longer use the more                     
disparaging labels for large CLs, but they are still labelled with their size, e.g. “S”, “M”, “L”, “XL”. 
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(1000-1999), etc. (However, in a typically Googly way, this is kept fun by replacing these               
familiar descriptions with amusing alternatives on a few days each year, such as             
talk-like-a-pirate day. :) 

2.4. Testing 
Unit Testing is strongly encouraged and widely practiced at Google . All code used in              
production is expected to have unit tests, and the code review tool will highlight if source files                 
are added without corresponding tests. Code reviewers usually require that any change which             
adds new functionality should also add new tests to cover the new functionality. Mocking              
frameworks (which allow construction of lightweight unit tests even for code with dependencies             
on heavyweight libraries) are quite popular. 
 
Integration testing and regression testing are also widely practiced. 
 
As discussed in "Presubmit Checks" above, testing can be automatically enforced as part of the               
code review and commit process. 
 
Google also has automated tools for measuring test coverage. The results are also integrated              
as an optional layer in the source code browser. 
 
Load testing prior to deployment is also de rigueur at Google. Teams are expected to               
produce a table or graph showing how key metrics, particularly latency and error rate, vary with                
the rate of incoming requests.  

2.5. Bug tracking 
Google uses a bug tracking system called Buganizer for tracking issues: bugs, feature requests,              
customer issues, and processes (such as releases or clean-up efforts). Bugs are categorized             
into hierarchical components and each component can have a default assignee and default             
email list to CC. When sending a source change for review, engineers are prompted to               
associate the change with a particular issue number. 
 
It is common (though not universal) for teams at Google to regularly scan through open issues                
in their component(s), prioritizing them and where appropriate assigning them to particular            
engineers. Some teams have a particular individual responsible for bug triage, others do bug              
triage in their regular team meetings. Many teams at Google make use of labels on bugs to                 
indicate whether bugs have been triaged, and which release(s) each bug is targeted to be fixed                
in. 

2.6. Programming languages 
Software engineers at Google are strongly encouraged to program in one of four             
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officially-approved programming languages at Google: C++, Java, Python, or Go. Minimizing           
the number of different programming languages used reduces obstacles to code reuse and             
programmer collaboration. 
 
There are also Google style guides for each language, to ensure that code all across the                
company is written with similar style, layout, naming conventions, etc. In addition there is a               
company-wide readability training process, whereby experienced engineers who care about          
code readability train other engineers in how to write readable, idiomatic code in a particular               
language, by reviewing a substantial change or series of changes until the reviewer is satisfied               
that the author knows how to write readable code in that language. Each change that adds                
non-trivial new code in a particular language must be approved by someone who has passed               
this “readability” training process in that language. 
 
In addition to these four languages, many specialized domain-specific languages are used            
for particular purposes (e.g. the build language used for specifying build targets and their              
dependencies). 
 
Interoperation between these different programming languages is done mainly using Protocol           
Buffers. Protocol Buffers is a way of encoding structured data in an efficient yet extensible               
way. It includes a domain-specific language for specifying structured data, together with a             
compiler that takes in such descriptions and generates code in C++, Java, Python, for              
constructing, accessing, serializing, and deserializing these objects. Google’s version of          
Protocol Buffers is integrated with Google’s RPC libraries, enabling simple cross-language           
RPCs, with serialization and deserialization of requests and responses handled automatically by            
the RPC framework. 
 
Commonality of process is a key to making development easy even with an enormous code               
base and a diversity of languages: there is a single set of commands to perform all the usual                  
software engineering tasks (such as check out, edit, build, test, review, commit, file bug report,               
etc.) and the same commands can be used no matter what project or language. Developers               
don’t need to learn a new development process just because the code that they are editing                
happens to be part of a different project or written in a different language. 
 

2.7. Debugging and Profiling tools 
Google servers are linked with libraries that provide a number of tools for debugging running               
servers. In case of a server crash, a signal handler will automatically dump a stack trace to a                  
log file, as well as saving the core file. If the crash was due to running out of heap memory, the                     
server will dump stack traces of the allocation sites of a sampled subset of the live heap objects.                  
There are also web interfaces for debugging that allow examining incoming and outgoing RPCs              
(including timing, error rates, rate limiting, etc.), changing command-line flag values (e.g. to             
increase logging verbosity for a particular module), resource consumption, profiling, and more.            
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These tools greatly increase the overall ease of debugging to the point where it is rare to fire up                   
a traditional debugger such as gdb. 

2.8. Release engineering 
A few teams have dedicated release engineers, but for most teams at Google, the release               
engineering work is done by regular software engineers. 
 
Releases are done frequently for most software; weekly or fortnightly releases are a common              
goal, and some teams even release daily. This is made possible by automating most of the                
normal release engineering tasks. Releasing frequently helps to keep engineers motivated           
(it’s harder to get excited about something if it won’t be released until many months or even                 
years into the future) and increases overall velocity by allowing more iterations, and thus more               
opportunities for feedback and more chances to respond to feedback, in a given time. 
 
A release typically starts in a fresh workspace, by syncing to the change number of the latest                 
“green” build (i.e. the last change for which all the automatic tests passed), and making a                
release branch. The release engineer can select additional changes to be “cherry-picked”, i.e.             
merged from the main branch onto the release branch. Then the software will be rebuilt from                
scratch and the tests are run. If any tests fail, additional changes are made to fix the failures                  
and those additional changes are cherry-picked onto the release branch, after which the             
software will be rebuilt and the tests rerun. When the tests all pass, the built executable(s) and                 
data file(s) are packaged up. All of these steps are automated so that the release engineer                
need only run some simple commands, or even just select some entries on a menu-driven UI,                
and choose which changes (if any) to cherry pick. 
 
Once a candidate build has been packaged up, it is typically loaded onto a “ staging” server for                 
further integration testing by small set of users  (sometimes just the development team). 
 
A useful technique involves sending a copy of (a subset of) the requests from production traffic                
to the staging server, but also sending those same requests to the current production servers               
for actual processing. The responses from the staging server are discarded, and the responses              
from the live production servers are sent back to the users. This helps ensure that any issues                 
that might cause serious problems (e.g. server crashes) can be detected before putting the              
server into production. 
 
The next step is to usually roll out to one or more “ canary” servers that are processing a                  
subset of the live production traffic. Unlike the “staging” servers, these are processing and              
responding to real users. 
 
Finally the release can be rolled out to all servers in all data centers. For very high-traffic,                 
high-reliability services, this is done with a gradual roll-out over a period of a couple of days, to                  
help reduce the impact of any outages due to newly introduced bugs not caught by any of the                  
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previous steps. 
 
For more information on release engineering at Google, see chapter 8 of the SRE book [7]. See                 
also [15]. 

2.9. Launch approval 
The launch of any user-visible change or significant design change requires approvals from a              
number of people outside of the core engineering team that implements the change. In              
particular approvals (often subject to detailed review) are required to ensure that code complies              
with legal requirements, privacy requirements, security requirements, reliability requirements         
(e.g. having appropriate automatic monitoring to detect server outages and automatically notify            
the appropriate engineers), business requirements, and so forth. 
 
The launch process is also designed to ensure that appropriate people within the company are               
notified whenever any significant new product or feature launches. 
 
Google has an internal launch approval tool that is used to track the required reviews               
and approvals and ensure compliance with the defined launch processes for each            
product. This tool is easily customizable, so that different products or product areas can have               
different sets of required reviews and approvals. 
 
For more information about launch processes, see chapter 27 of the SRE book [7]. 

2.10. Post-mortems 
Whenever there is a significant outage of any of our production systems, or similar mishap, the                
people involved are required to write a post-mortem document. This document describes the             
incident, including title, summary, impact, timeline, root cause(s), what worked/what didn’t, and            
action items. The focus is on the problems, and how to avoid them in future, not on the                  
people or apportioning blame. The impact section tries to quantify the effect of the incident, in                
terms of duration of outage, number of lost queries (or failed RPCs, etc.), and revenue. The                
timeline section gives a timeline of the events leading up to the outage and the steps taken to                  
diagnose and rectify it. The what worked/what didn’t section describes the lessons learnt --              
which practices helped to quickly detect and resolve the issue, what went wrong, and what               
concrete actions (preferably filed as bugs assigned to specific people) can be take to reduce the                
likelihood and/or severity of similar problems in future. 
 
For more information on post-mortem culture at Google, see chapter 15 of the SRE book [7]. 

2.11. Frequent rewrites 
Most software at Google gets rewritten every few years. 

11 



Software Engineering at Google, by Fergus Henderson 

 
This may seem incredibly costly. Indeed, it does consume a large fraction of Google’s              
resources. However, it also has some crucial benefits that are key to Google’s agility and               
long-term success. In a period of a few years, it is typical for the requirements for a product to                   
change significantly, as the software environment and other technology around it change, and             
as changes in technology or in the marketplace affect user needs, desires, and expectations.              
Software that is a few years old was designed around an older set of requirements and is                 
typically not designed in a way that is optimal for current requirements. Furthermore, it has               
typically accumulated a lot of complexity. Rewriting code cuts away all the unnecessary             
accumulated complexity that was addressing requirements which are no longer so important. In             
addition, rewriting code is a way of transferring knowledge and a sense of ownership to newer                
team members. This sense of ownership is crucial for productivity: engineers naturally put more              
effort into developing features and fixing problems in code that they feel is “theirs”. Frequent               
rewrites also encourage mobility of engineers between different projects which helps to            
encourage cross-pollination of ideas. Frequent rewrites also help to ensure that code is written              
using modern technology and methodology. 

3. Project management 

3.1. 20% time 
Engineers are permitted to spend up to 20% of their time working on any project of their                 
choice, without needing approval from their manager or anyone else. This trust in             
engineers is extremely valuable, for several reasons. Firstly, it allows anyone with a good idea,               
even if it is an idea that others would not immediately recognize as being worthwhile, to have                 
sufficient time to develop a prototype, demo, or presentation to show the value of their idea.                
Secondly, it provides management with visibility into activity that might otherwise be hidden. In              
other companies that don’t have an official policy of allowing 20% time, engineers sometimes              
work on “skunkwork” projects without informing management. It’s much better if engineers can             
be open about such projects, describing their work on such projects in their regular status               
updates, even in cases where their management may not agree on the value of the project.                
Having a company-wide official policy and a culture that supports it makes this possible.              
Thirdly, by allowing engineers to spend a small portion of their time working on more fun stuff, it                  
keeps engineers motivated and excited by what they do, and stops them getting burnt out,               
which can easily happen if they feel compelled to spend 100% of their time working on more                 
tedious tasks. The difference in productivity between engaged, motivated engineers and burnt            
out engineers is a lot more than 20%. Fourthly, it encourages a culture of innovation. Seeing                
other engineers working on fun experimental 20% projects encourages everyone to do the             
same. 

3.2. Objectives and Key Results (OKRs) 
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Individuals and teams at Google are required to explicitly document their goals and to              
assess their progress towards these goals. Teams set quarterly and annual objectives, with              
measurable key results that show progress towards these objectives. This is done at every              
level of the company, going all the way up to defining goals for the whole company. Goals for                  
individuals and small teams should align with the higher-level goals for the broader teams that               
they are part of and with the overall company goals. At the end of each quarter, progress                 
towards the measurable key results is recorded and each objective is given a score from 0.0 (no                 
progress) to 1.0 (100% completion). OKRs and OKR scores are normally made visible across              
Google (with occasional exceptions for especially sensitive information such as highly           
confidential projects), but they not used directly as input to an individual’s performance             
appraisal. 
 
OKRs should be set high: the desired target overall average score is 65%, meaning that a team                 
is encouraged to set as goals about 50% more tasks than they are likely to actually accomplish.                 
If a team scores significantly higher than that, they are encouraged to set more ambitious OKRs                
for the following quarter (and conversely if they score significantly lower than that, they are               
encouraged to set their OKRs more conservatively the next quarter). 
 
OKRs provide a key mechanism for communicating what each part of the company is working               
on, and for encouraging good performance from employees via social incentives… engineers            
know that their team will have a meeting where the OKRs will be scored, and have a natural                  
drive to try to score well, even though OKRs have no direct impact on performance appraisals                
or compensation. Defining key results that are objective and measurable helps ensure that this              
human drive to perform well is channelled to doing things that have real concrete measurable               
impact on progress towards shared objectives. 

3.3 Project approval 
Although there is a well-defined process for launch approvals, Google does not have a              
well-defined process for project approval or cancellation. Despite having been at Google for             
nearly 10 years, and now having become a manager myself, I still don’t fully understand how                
such decisions are made. In part this is because the approach to this is not uniform across the                  
company. Managers at every level are responsible and accountable for what projects their             
teams work on, and exercise their discretion as they see fit. In some cases, this means that                 
such decisions are made in a quite bottom-up fashion, with engineers being given freedom to               
choose which projects to work on, within their team’s scope. In other cases, such decisions are                
made in a much more top-down fashion, with executives or managers making decisions about              
which projects will go ahead, which will get additional resources, and which will get cancelled. 

3.4 Corporate reorganizations 
Occasionally an executive decision is made to cancel a large project, and then the many               
engineers who had been working on that project may have to find new projects on new teams.                 
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Similarly there have been occasional “defragmentation” efforts, where projects that are split            
across multiple geographic locations are consolidated into a smaller number of locations, with             
engineers in some locations being required to change team and/or project in order to achieve               
this. In such cases, engineers are generally given freedom to choose their new team and role                
from within the positions available in their geographic location, or in the case of              
defragmentation, they may also be given the option of staying on the same team and project by                 
moving to a different location. 
 
In addition, other kinds of corporate reorganizations, such as merging or splitting teams and              
changes in reporting chains, seem to be fairly frequent occurrences, although I don’t know how               
Google compares with other large companies on that. In a large, technology-driven            
organization, somewhat frequent reorganization may be necessary to avoid organizational          
inefficiencies as the technology and requirements change. 

4. People management 

4.1. Roles 
As we’ll explain in more detail below, Google separates the engineering and management             
career progression ladders, separates the tech lead role from management, embeds research            
within engineering, and supports engineers with product managers, project managers, and site            
reliability engineers (SREs). It seems likely that at least some of these practices are important               
to sustaining the culture of innovation that has developed at Google. 
 
Google has a small number of different roles within engineering. Within each role, there is a                
career progression possible, with a sequence of levels, and the possibility of promotion (with              
associated improvement to compensation, e.g. salary) to recognize performance at the next            
level. 
 
The main roles are these: 
 

● Engineering Manager 
 
This is the only people management role in this list. Individuals in other roles such as                
Software Engineer may manage people, but Engineering Managers always manage          
people. Engineering Managers are often former Software Engineers, and invariably          
have considerable technical expertise, as well as people skills. 
 
There is a distinction between technical leadership and people management. 
Engineering Managers do not necessarily lead projects; projects are led by a Tech Lead,              
who can be an Engineering Manager, but who is more often a Software Engineer. A               
project’s Tech Lead has the final say for technical decisions in that project. 
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Managers are responsible for selecting Tech Leads, and for the performance of their             
teams. They perform coaching and assisting with career development, do performance           
evaluation (using input from peer feedback, see below), and are responsible for some             
aspects of compensation. They are also responsible for some parts of the hiring             
process. 
 
Engineering Managers normally directly manage anywhere between 3 and 30 people,           
although 8 to 12 is most common. 

 
● Software Engineer (SWE) 

 
Most people doing software development work have this role. The hiring bar for             
software engineers at Google is very high; by hiring only exceptionally good software             
engineers, a lot of the software problems that plague other organizations are avoided or              
minimized. 
 
Google has separate career progression sequences for engineering and         
management. Although it is possible for a Software Engineer to manage people, or to              
transfer to the Engineering Manager role, managing people is not a requirement for             
promotion, even at the highest levels. At the higher levels, showing leadership is             
required, but that can come in many forms. For example creating great software that              
has a huge impact or is used by very many other engineers is sufficient. This is                
important, because it means that people who have great technical skills but lack the              
desire or skills to manage people still have a good career progression path that does not                
require them to take a management track. This avoids the problem that some             
organizations suffer where people end up in management positions for reasons of career             
advancement but neglect the people management of the people in their team. 

 
 

● Research Scientist 
 
The hiring criteria for this role are very strict, and the bar is extremely high, requiring                
demonstrated exceptional research ability evidenced by a great publication record *and*           
ability to write code. Many very talented people in academia who would be able to               
qualify for a Software Engineer role would not qualify for a Research Scientist role at               
Google; most of the people with PhDs at Google are Software Engineers rather than              
Research Scientists. Research scientists are evaluated on their research contributions,          
including their publications, but apart from that and the different title, there is not really               
that much difference between the Software Engineer and Research Scientist role at            
Google. Both can do original research and publish papers, both can develop new             
product ideas and new technologies, and both can and do write code and develop              
products. Research Scientists at Google usually work alongside Software Engineers, in           
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the same teams and working on the same products or the same research. This practice               
of embedding research within engineering contributes greatly to the ease with which new             
research can be incorporated into shipping products. 

 
● Site Reliability Engineer (SRE) 

 
The maintenance of operational systems is done by software engineering teams, rather            
than traditional sysadmin types, but the hiring requirements for software engineering           
skills for the SRE are slightly lower than the requirements for the Software Engineering              
position. The nature and purpose of the SRE role is explained very well and in detail in                 
the SRE book [7], so we won’t discuss it further here. 

 
● Product Manager 

 
Product Managers are responsible for the management of a product; as advocates for             
the product users, they coordinate the work of software engineers, evangelizing features            
of importance to those users, coordinating with other teams, tracking bugs and            
schedules, and ensuring that everything needed is in place to produce a high quality              
product. Product Managers usually do NOT write code themselves, but work with            
software engineers to ensure that the right code gets written. 
 

● Program Manager / Technical Program Manager 
 
Program Managers have a role that is broadly similar to Product Manager, but rather              
than managing a product, they manage projects, processes, or operations (e.g. data            
collection). Technical Program Managers are similar, but also require specific technical           
expertise relating to their work, e.g. linguistics for dealing with speech data. 
 
The ratio of Software Engineers to Product Managers and Program Managers varies            
across the organization, but is generally high, e.g. in the range 4:1 to 30:1. 

4.2. Facilities 
Google is famous for it’s fun facilities, with features like slides, ball pits, and games rooms. 
That helps attract and retain good talent. Google’s excellent cafes, which are free to              
employees, provide that function too, and also subtly encourage Googlers to stay in the office;               
hunger is never a reason to leave. The frequent placement of “microkitchens” where employees              
can grab snacks and drinks serves the same function too, but also acts as an important source                 
of informal idea exchange, as many conversations start up there. Gyms, sports, and on-site              
massage help keep employees fit, healthy, and happy, which improves productivity and            
retention. 
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The seating at Google is open-plan, and often fairly dense. While controversial [20], this              
encourages communication, sometimes at the expense of individual concentration, and is           
economical. 
 
Employees are assigned an individual seat, but seats are re-assigned fairly frequently (e.g.             
every 6-12 months, often as a consequence of the organization expanding), with seating chosen              
by managers to facilitate and encourage communication, which is always easier between            
adjacent or nearly adjacent individuals. 
 
Google’s facilities all have meeting rooms fitted with state-of-the-art video conference facilities,            
where connecting to the other party for a prescheduled calendar invite is just a single tap on the                  
screen. 

4.3. Training 
Google encourages employee education in many ways: 

● New Googlers (“Nooglers”) have a mandatory initial training course. 
● Technical staff (SWEs and research scientists) start by doing “Codelabs”: short online            

training courses in individual technologies, with coding exercises. 
● Google offers employees a variety of online and in-person training courses. 
● Google also offers support for studying at external institutions. 

 
In addition, each Noogler is usually appointed an official “Mentor” and a separate “Buddy” to               
help get them up to speed. Unofficial mentoring also occurs via regular meetings with their               
manager, team meetings, code reviews, design reviews, and informal processes. 

4.4 Transfers 
Transfers between different parts of the company are encouraged, to help spread            
knowledge and technology across the organization and improve cross-organization         
communication. Transfers between projects and/or offices are allowed for employees in good            
standing after 12 months in a position. Software engineers are also encouraged to do              
temporary assignments in other parts of the organization, e.g. a six-month “rotation” (temporary             
assignment) in SRE (Site Reliability Engineering). 

4.5. Performance appraisal and rewards 
Feedback is strongly encouraged at Google. Engineers can give each other explicit positive             
feedback via “peer bonuses” and “kudos”. Any employee can nominate any other employee for              
a “peer bonus” -- a cash bonus of $100 -- up to twice per year, for going beyond the normal call                     
of duty, just by filling in a web form to describe the reason. Team-mates are also typically                 
notified when a peer bonus is awarded. Employees can also give “kudos”, formalized             
statements of praise which provide explicit social recognition for good work, but with no financial               
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reward; for “kudos” there is no requirement that the work be beyond the normal call of duty, and                  
no limit on the number of times that they can be bestowed. 
 
Managers can also award bonuses, including spot bonuses, e.g. for project completion. And as              
with many companies, Google employees get annual performance bonuses and equity awards            
based on their performance. 
 
Google has a very careful and detailed promotion process, which involves nomination by self or               
manager, self-review, peer reviews, manager appraisals; the actual decisions are then made by             
promotion committees based on that input, and the results can be subject to further review by                
promotion appeals committees. Ensuring that the right people get promoted is critical to             
maintaining the right incentives for employees. 
 
Poor performance, on the other hand, is handled with manager feedback, and if necessary with               
performance improvement plans, which involve setting very explicit concrete performance          
targets and assessing progress towards those targets. If that fails, termination for poor             
performance is possible, but in practice this is extremely rare at Google. 
 
Manager performance is assessed with feedback surveys; every employee is asked to fill in an               
survey about the performance of their manager twice a year, and the results are anonymized               
and aggregated and then made available to managers. This kind of upward feedback is very               
important for maintaining and improving the quality of management throughout the organization. 

5. Conclusions 
We have briefly described most of the key software engineering practices used at Google. Of               
course Google is now a large and diverse organization, and some parts of the organization have                
different practices. But the practices described here are generally followed by most teams at              
Google. 
 
With so many different software engineering practices involved, and with so many other reasons              
for Google’s success that are not related to our software engineering practices, it is extremely               
difficult to give any quantitative or objective evidence connecting individual practices with            
improved outcomes. However, these practices are the ones that have stood the test of time at                
Google, where they have been subject to the collective subjective judgement of many             
thousands of excellent software engineers. 
 
For those in other organizations who are advocating for the use of a particular practice that                
happens to be described in this paper, perhaps it will help to say “it’s good enough for Google”. 
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